Matches in SemOpenAlex for { <https://semopenalex.org/work/W4312995477> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4312995477 abstract "Brain structures and their varying connectivity patterns form complex networks that provide rich information to help in understanding high-order cognitive functions and their relationship with low-order sensory-motor processing. The brains with pathological conditions such as Autism Spectrum Disorder (ASD) exhibit diverse modular networks organised in hierarchies with small-world properties. However, much of the network hierarchy has not been carefully examined in ASD. Different machine learning architectures including Convolutional Neural Networks (CNN) have failed to extract related complex neuronal features and to exploit the hierarchical neural connectivity present at different electrode sites of the electroencephalogram (EEG) data. The presented work has addressed the mentioned limitations by developing a two-layered Visible-Graph Convolutional Network (VGCN) which projects each channel's EEG sample onto nodes of a graph with weighted edges formulated as per the hierarchical visibility among nodes. The proposed model has been applied to EEG signals obtained from ASD and Typical Individuals (TD) and has achieved a classification accuracy of 93.78% in comparison to state-of-the-art methods, including support vector machines (89.52%), deep neural network (78.21%), convolutional network (83.88%) and graph network (86.45%). Other performance metrics such as precision, recall, F1-score and Mathews correlation coefficient showed similar results, hence, supporting the proposed model's strengths. This evidence suggests that graph networks can confidently reveal hierarchical imbalances in the brain functioning of ASD." @default.
- W4312995477 created "2023-01-05" @default.
- W4312995477 creator A5016778742 @default.
- W4312995477 creator A5068583006 @default.
- W4312995477 date "2022-07-18" @default.
- W4312995477 modified "2023-10-06" @default.
- W4312995477 title "Computing Hierarchical Complexity of the Brain from Electroencephalogram Signals: A Graph Convolutional Network-based Approach" @default.
- W4312995477 cites W1975527028 @default.
- W4312995477 cites W2018924502 @default.
- W4312995477 cites W2039448553 @default.
- W4312995477 cites W2055538060 @default.
- W4312995477 cites W2521472744 @default.
- W4312995477 cites W2768956845 @default.
- W4312995477 cites W2771364297 @default.
- W4312995477 cites W2797702265 @default.
- W4312995477 cites W2905451100 @default.
- W4312995477 cites W2985331920 @default.
- W4312995477 cites W2990283237 @default.
- W4312995477 cites W2999309192 @default.
- W4312995477 cites W3009659298 @default.
- W4312995477 cites W3017536446 @default.
- W4312995477 cites W3048964647 @default.
- W4312995477 cites W3090817858 @default.
- W4312995477 cites W3091643389 @default.
- W4312995477 cites W3091780972 @default.
- W4312995477 cites W3091860120 @default.
- W4312995477 cites W3165031368 @default.
- W4312995477 cites W3192818153 @default.
- W4312995477 cites W3193978033 @default.
- W4312995477 cites W3199187641 @default.
- W4312995477 cites W3199364093 @default.
- W4312995477 doi "https://doi.org/10.1109/ijcnn55064.2022.9892799" @default.
- W4312995477 hasPublicationYear "2022" @default.
- W4312995477 type Work @default.
- W4312995477 citedByCount "5" @default.
- W4312995477 countsByYear W43129954772022 @default.
- W4312995477 countsByYear W43129954772023 @default.
- W4312995477 crossrefType "proceedings-article" @default.
- W4312995477 hasAuthorship W4312995477A5016778742 @default.
- W4312995477 hasAuthorship W4312995477A5068583006 @default.
- W4312995477 hasConcept C106937863 @default.
- W4312995477 hasConcept C119857082 @default.
- W4312995477 hasConcept C132525143 @default.
- W4312995477 hasConcept C136764020 @default.
- W4312995477 hasConcept C153180895 @default.
- W4312995477 hasConcept C154945302 @default.
- W4312995477 hasConcept C15744967 @default.
- W4312995477 hasConcept C169760540 @default.
- W4312995477 hasConcept C183331307 @default.
- W4312995477 hasConcept C34947359 @default.
- W4312995477 hasConcept C41008148 @default.
- W4312995477 hasConcept C522805319 @default.
- W4312995477 hasConcept C80444323 @default.
- W4312995477 hasConcept C81363708 @default.
- W4312995477 hasConceptScore W4312995477C106937863 @default.
- W4312995477 hasConceptScore W4312995477C119857082 @default.
- W4312995477 hasConceptScore W4312995477C132525143 @default.
- W4312995477 hasConceptScore W4312995477C136764020 @default.
- W4312995477 hasConceptScore W4312995477C153180895 @default.
- W4312995477 hasConceptScore W4312995477C154945302 @default.
- W4312995477 hasConceptScore W4312995477C15744967 @default.
- W4312995477 hasConceptScore W4312995477C169760540 @default.
- W4312995477 hasConceptScore W4312995477C183331307 @default.
- W4312995477 hasConceptScore W4312995477C34947359 @default.
- W4312995477 hasConceptScore W4312995477C41008148 @default.
- W4312995477 hasConceptScore W4312995477C522805319 @default.
- W4312995477 hasConceptScore W4312995477C80444323 @default.
- W4312995477 hasConceptScore W4312995477C81363708 @default.
- W4312995477 hasLocation W43129954771 @default.
- W4312995477 hasOpenAccess W4312995477 @default.
- W4312995477 hasPrimaryLocation W43129954771 @default.
- W4312995477 hasRelatedWork W2175746458 @default.
- W4312995477 hasRelatedWork W2732542196 @default.
- W4312995477 hasRelatedWork W2738221750 @default.
- W4312995477 hasRelatedWork W2760085659 @default.
- W4312995477 hasRelatedWork W2883200793 @default.
- W4312995477 hasRelatedWork W2912288872 @default.
- W4312995477 hasRelatedWork W3012978760 @default.
- W4312995477 hasRelatedWork W3027997911 @default.
- W4312995477 hasRelatedWork W3093612317 @default.
- W4312995477 hasRelatedWork W4287776258 @default.
- W4312995477 isParatext "false" @default.
- W4312995477 isRetracted "false" @default.
- W4312995477 workType "article" @default.