Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313001443> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W4313001443 abstract "The implement of efficient neuron models and neural networks is one of the crucial issues in the field of brain-inspired computing. Considering the state-of-the-art, LIF is a commonly used phenomenological model in brain-inspired computing and HH is a common physiological model. The neuron computing model based on the hierarchical linear model (HLN) can not only reproduce the physiological behavior of neurons, but also consider the simplicity of calculation, which solves the contradiction between high physiological credibility and lightweight calculation of LIF model and HH model. In addition, HLN model can also realize fully-paralleled computing, which can improve the computing efficiency and throughput of neural network. In view of the aforementioned advantages, HLN model is a promising solution to realize a large-scale brain-inspired computing system. In this work, we present a modular design of HLN neurons to implement a cascaded spiking neural network with full parallelism and also a multiplier-less implantation method to minimize the resource consumption. The cascade network consists of HLN neurons are implemented on an Field Programmable Gate Array (FPGA) platform. The results show that HLN model can simulate the dynamic characteristics of the membrane potential in dendrites and soma. Compared with the model before optimization, the multiplier-less and modular implementation proposed in this paper can save 100% DSP resources and 21% logic resources on FPGA, which proves that the multiplier-less HLN model has outstanding performance advantages and is helpful to build a large-scale brain-inspired computing platform." @default.
- W4313001443 created "2023-01-05" @default.
- W4313001443 creator A5009318195 @default.
- W4313001443 creator A5021452379 @default.
- W4313001443 creator A5043490236 @default.
- W4313001443 creator A5075177573 @default.
- W4313001443 date "2022-07-25" @default.
- W4313001443 modified "2023-10-16" @default.
- W4313001443 title "Neural Network with Cascaded Model Dendritic morphologic and FPGA Implementation" @default.
- W4313001443 cites W1972745594 @default.
- W4313001443 cites W1993465148 @default.
- W4313001443 cites W2000129051 @default.
- W4313001443 cites W2004159082 @default.
- W4313001443 cites W2016708835 @default.
- W4313001443 cites W2059118682 @default.
- W4313001443 cites W2072851333 @default.
- W4313001443 cites W2104199070 @default.
- W4313001443 cites W2116350235 @default.
- W4313001443 cites W2131125425 @default.
- W4313001443 cites W2145935269 @default.
- W4313001443 cites W2208111088 @default.
- W4313001443 cites W2595015964 @default.
- W4313001443 cites W2738724892 @default.
- W4313001443 cites W2781725908 @default.
- W4313001443 cites W2890218259 @default.
- W4313001443 cites W2914361849 @default.
- W4313001443 cites W2942026623 @default.
- W4313001443 cites W2966081953 @default.
- W4313001443 cites W2990793844 @default.
- W4313001443 cites W3092064940 @default.
- W4313001443 doi "https://doi.org/10.23919/ccc55666.2022.9901869" @default.
- W4313001443 hasPublicationYear "2022" @default.
- W4313001443 type Work @default.
- W4313001443 citedByCount "0" @default.
- W4313001443 crossrefType "proceedings-article" @default.
- W4313001443 hasAuthorship W4313001443A5009318195 @default.
- W4313001443 hasAuthorship W4313001443A5021452379 @default.
- W4313001443 hasAuthorship W4313001443A5043490236 @default.
- W4313001443 hasAuthorship W4313001443A5075177573 @default.
- W4313001443 hasConcept C101468663 @default.
- W4313001443 hasConcept C111919701 @default.
- W4313001443 hasConcept C118524514 @default.
- W4313001443 hasConcept C124584101 @default.
- W4313001443 hasConcept C139719470 @default.
- W4313001443 hasConcept C149635348 @default.
- W4313001443 hasConcept C154945302 @default.
- W4313001443 hasConcept C162324750 @default.
- W4313001443 hasConcept C186565885 @default.
- W4313001443 hasConcept C41008148 @default.
- W4313001443 hasConcept C42935608 @default.
- W4313001443 hasConcept C50644808 @default.
- W4313001443 hasConceptScore W4313001443C101468663 @default.
- W4313001443 hasConceptScore W4313001443C111919701 @default.
- W4313001443 hasConceptScore W4313001443C118524514 @default.
- W4313001443 hasConceptScore W4313001443C124584101 @default.
- W4313001443 hasConceptScore W4313001443C139719470 @default.
- W4313001443 hasConceptScore W4313001443C149635348 @default.
- W4313001443 hasConceptScore W4313001443C154945302 @default.
- W4313001443 hasConceptScore W4313001443C162324750 @default.
- W4313001443 hasConceptScore W4313001443C186565885 @default.
- W4313001443 hasConceptScore W4313001443C41008148 @default.
- W4313001443 hasConceptScore W4313001443C42935608 @default.
- W4313001443 hasConceptScore W4313001443C50644808 @default.
- W4313001443 hasFunder F4320321001 @default.
- W4313001443 hasLocation W43130014431 @default.
- W4313001443 hasOpenAccess W4313001443 @default.
- W4313001443 hasPrimaryLocation W43130014431 @default.
- W4313001443 hasRelatedWork W1966601033 @default.
- W4313001443 hasRelatedWork W2003913626 @default.
- W4313001443 hasRelatedWork W2063534976 @default.
- W4313001443 hasRelatedWork W2114257558 @default.
- W4313001443 hasRelatedWork W2320205417 @default.
- W4313001443 hasRelatedWork W2361841559 @default.
- W4313001443 hasRelatedWork W2391619368 @default.
- W4313001443 hasRelatedWork W2542845775 @default.
- W4313001443 hasRelatedWork W2616418345 @default.
- W4313001443 hasRelatedWork W2980006224 @default.
- W4313001443 isParatext "false" @default.
- W4313001443 isRetracted "false" @default.
- W4313001443 workType "article" @default.