Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313002056> ?p ?o ?g. }
- W4313002056 endingPage "2337" @default.
- W4313002056 startingPage "2325" @default.
- W4313002056 abstract "As the demand for mobile data traffic continues to grow, offloading data traffic to unlicensed spectrum is a promising approach that can relieve the pressure on cellular systems. Therefore, it is an urgent need to propose an unlicensed spectrum access method to guarantee the harmonious and efficient coexistence between cellular network technologies such as LTE and incumbent users such as WiFi in the unlicensed spectrum. However, existing coexistence schemes such as licensed assisted access (LAA) and LTE-unlicensed (LTE-U) still suffer from inefficient spectrum utilization and unsatisfactory fairness. In the paper, we formulate the optimization problem of the unlicensed spectrum access among multiple small bases (SBSs) as a game, and then solve the Nash Equilibrium (NE) with cooperative and distributed multi-agent deep reinforcement learning (MADRL). Specifically, a two level access framework for the coexistence scenario, which consists of feedback cycle and executive cycle, is first proposed, and then the key elements of MADRL including state, action, reward and Q-network are designed in detail based on the proposed access framework. To overcome the problems of learning divergence and prohibitive computation overhead in the coexistence scenario with multiple SBSs due to the non-stability phenomena, we adopt the mean field technology to solve the NE, which can simplify the process of solving NE by converting the interaction of an agent with the remaining multiple agents into an action with the average effect of them. Simulation results show that 1) the proposed algorithm can overcome the learning divergence problem and converge to the NE quickly, and 2) the proposed algorithm can achieve the bi-objective optimization of total throughput and fairness of the coexistence network, and can achieve better performance in terms of throughput and fairness compared with the baseline methods such as Cat-4 LBT, Cooperative LBT and Random schemes." @default.
- W4313002056 created "2023-01-05" @default.
- W4313002056 creator A5011436940 @default.
- W4313002056 creator A5028802798 @default.
- W4313002056 creator A5073998375 @default.
- W4313002056 creator A5082446723 @default.
- W4313002056 creator A5087012349 @default.
- W4313002056 date "2023-04-01" @default.
- W4313002056 modified "2023-10-13" @default.
- W4313002056 title "Intelligent Access to Unlicensed Spectrum: A Mean Field Based Deep Reinforcement Learning Approach" @default.
- W4313002056 cites W2005327844 @default.
- W4313002056 cites W2089415692 @default.
- W4313002056 cites W2145339207 @default.
- W4313002056 cites W2162598825 @default.
- W4313002056 cites W2165131254 @default.
- W4313002056 cites W2256955842 @default.
- W4313002056 cites W2278683827 @default.
- W4313002056 cites W2421246997 @default.
- W4313002056 cites W2493910502 @default.
- W4313002056 cites W2509052156 @default.
- W4313002056 cites W2562565773 @default.
- W4313002056 cites W2898754723 @default.
- W4313002056 cites W2900490252 @default.
- W4313002056 cites W2908261578 @default.
- W4313002056 cites W2922273628 @default.
- W4313002056 cites W2963194439 @default.
- W4313002056 cites W2963581947 @default.
- W4313002056 cites W2964005248 @default.
- W4313002056 cites W2965272873 @default.
- W4313002056 cites W2968764495 @default.
- W4313002056 cites W2969435873 @default.
- W4313002056 cites W2969519626 @default.
- W4313002056 cites W2981096252 @default.
- W4313002056 cites W2982143035 @default.
- W4313002056 cites W2997091448 @default.
- W4313002056 cites W2997237340 @default.
- W4313002056 cites W2998709521 @default.
- W4313002056 cites W3005252141 @default.
- W4313002056 cites W3012305658 @default.
- W4313002056 cites W3024896345 @default.
- W4313002056 cites W3048945047 @default.
- W4313002056 cites W3088733992 @default.
- W4313002056 cites W3099404728 @default.
- W4313002056 cites W3105649577 @default.
- W4313002056 cites W3110989801 @default.
- W4313002056 cites W3115203458 @default.
- W4313002056 cites W3158805953 @default.
- W4313002056 cites W3169776651 @default.
- W4313002056 cites W3179901930 @default.
- W4313002056 doi "https://doi.org/10.1109/twc.2022.3210955" @default.
- W4313002056 hasPublicationYear "2023" @default.
- W4313002056 type Work @default.
- W4313002056 citedByCount "2" @default.
- W4313002056 countsByYear W43130020562023 @default.
- W4313002056 crossrefType "journal-article" @default.
- W4313002056 hasAuthorship W4313002056A5011436940 @default.
- W4313002056 hasAuthorship W4313002056A5028802798 @default.
- W4313002056 hasAuthorship W4313002056A5073998375 @default.
- W4313002056 hasAuthorship W4313002056A5082446723 @default.
- W4313002056 hasAuthorship W4313002056A5087012349 @default.
- W4313002056 hasConcept C111919701 @default.
- W4313002056 hasConcept C120314980 @default.
- W4313002056 hasConcept C126255220 @default.
- W4313002056 hasConcept C149946192 @default.
- W4313002056 hasConcept C153646914 @default.
- W4313002056 hasConcept C154945302 @default.
- W4313002056 hasConcept C188116033 @default.
- W4313002056 hasConcept C2779960059 @default.
- W4313002056 hasConcept C31258907 @default.
- W4313002056 hasConcept C33923547 @default.
- W4313002056 hasConcept C41008148 @default.
- W4313002056 hasConcept C46814582 @default.
- W4313002056 hasConcept C555944384 @default.
- W4313002056 hasConcept C63029442 @default.
- W4313002056 hasConcept C76155785 @default.
- W4313002056 hasConcept C97541855 @default.
- W4313002056 hasConceptScore W4313002056C111919701 @default.
- W4313002056 hasConceptScore W4313002056C120314980 @default.
- W4313002056 hasConceptScore W4313002056C126255220 @default.
- W4313002056 hasConceptScore W4313002056C149946192 @default.
- W4313002056 hasConceptScore W4313002056C153646914 @default.
- W4313002056 hasConceptScore W4313002056C154945302 @default.
- W4313002056 hasConceptScore W4313002056C188116033 @default.
- W4313002056 hasConceptScore W4313002056C2779960059 @default.
- W4313002056 hasConceptScore W4313002056C31258907 @default.
- W4313002056 hasConceptScore W4313002056C33923547 @default.
- W4313002056 hasConceptScore W4313002056C41008148 @default.
- W4313002056 hasConceptScore W4313002056C46814582 @default.
- W4313002056 hasConceptScore W4313002056C555944384 @default.
- W4313002056 hasConceptScore W4313002056C63029442 @default.
- W4313002056 hasConceptScore W4313002056C76155785 @default.
- W4313002056 hasConceptScore W4313002056C97541855 @default.
- W4313002056 hasFunder F4320321001 @default.
- W4313002056 hasFunder F4320335777 @default.
- W4313002056 hasFunder F4320336569 @default.
- W4313002056 hasIssue "4" @default.
- W4313002056 hasLocation W43130020561 @default.
- W4313002056 hasOpenAccess W4313002056 @default.