Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313002440> ?p ?o ?g. }
- W4313002440 endingPage "123834" @default.
- W4313002440 startingPage "123809" @default.
- W4313002440 abstract "In recent years, there has been an increased interest in giving verbal commands to self-driving cars. Even though multiple companies have showcased progress towards fully autonomous vehicles, surveys have indicated that people are wary of relinquishing total control of the vehicle to the AI. Thus, a system allowing passengers to control the vehicle’s actions would be preferable. Natural language, the most widespread form of communication among humans, presents itself as the most natural control interface, and survey results confirm that the ability to give verbal commands to self-driving vehicles would make the passengers more at ease. In this work, we propose a novel system that predicts which object is referred to by the issued command and the path the car should follow through the immediate surroundings to execute the command. We experiment with different approaches and features to predict the object of interest and show that our simple but effective approach achieves state-of-the-art performance. For predicting the trajectory, we propose a model that relies on a mixture density approach for modeling the distributions of key waypoints of the trajectory in the top-down scene layout. Additionally, we investigate the influence of the two tasks on each other and show that improvements in the prediction of the object of interest lead to improvements in the trajectory prediction task. Finally, we provide the research community with an extension to the Talk2Car dataset, with new trajectory annotations for given commands." @default.
- W4313002440 created "2023-01-05" @default.
- W4313002440 creator A5031941911 @default.
- W4313002440 creator A5068106112 @default.
- W4313002440 creator A5075796989 @default.
- W4313002440 creator A5077783791 @default.
- W4313002440 date "2022-01-01" @default.
- W4313002440 modified "2023-09-26" @default.
- W4313002440 title "Talk2Car: Predicting Physical Trajectories for Natural Language Commands" @default.
- W4313002440 cites W1969483458 @default.
- W4313002440 cites W2194775991 @default.
- W4313002440 cites W2336558992 @default.
- W4313002440 cites W2424778531 @default.
- W4313002440 cites W2565639579 @default.
- W4313002440 cites W2607296803 @default.
- W4313002440 cites W2782843968 @default.
- W4313002440 cites W2799263800 @default.
- W4313002440 cites W2890902815 @default.
- W4313002440 cites W2948479456 @default.
- W4313002440 cites W2963080533 @default.
- W4313002440 cites W2963150697 @default.
- W4313002440 cites W2963727135 @default.
- W4313002440 cites W2963735856 @default.
- W4313002440 cites W2963818059 @default.
- W4313002440 cites W2964345792 @default.
- W4313002440 cites W2968296999 @default.
- W4313002440 cites W2970641574 @default.
- W4313002440 cites W2979727876 @default.
- W4313002440 cites W3003391301 @default.
- W4313002440 cites W3003954087 @default.
- W4313002440 cites W3035096461 @default.
- W4313002440 cites W3035461736 @default.
- W4313002440 cites W3035574168 @default.
- W4313002440 cites W3035692480 @default.
- W4313002440 cites W3099019594 @default.
- W4313002440 cites W3104529101 @default.
- W4313002440 cites W3105926814 @default.
- W4313002440 cites W3107819843 @default.
- W4313002440 cites W3108908812 @default.
- W4313002440 cites W3118341329 @default.
- W4313002440 cites W3120465108 @default.
- W4313002440 cites W3120703970 @default.
- W4313002440 cites W3127239200 @default.
- W4313002440 cites W3128472479 @default.
- W4313002440 cites W3134026309 @default.
- W4313002440 cites W3155707959 @default.
- W4313002440 cites W3159619744 @default.
- W4313002440 cites W3166089996 @default.
- W4313002440 cites W3167095230 @default.
- W4313002440 cites W3170182874 @default.
- W4313002440 cites W3170672542 @default.
- W4313002440 cites W3200129944 @default.
- W4313002440 cites W3201719054 @default.
- W4313002440 cites W3215100485 @default.
- W4313002440 cites W4214558638 @default.
- W4313002440 cites W4214593147 @default.
- W4313002440 cites W4214624153 @default.
- W4313002440 cites W4214777292 @default.
- W4313002440 cites W4240592325 @default.
- W4313002440 cites W4250482878 @default.
- W4313002440 cites W4283798518 @default.
- W4313002440 cites W4285169422 @default.
- W4313002440 doi "https://doi.org/10.1109/access.2022.3224144" @default.
- W4313002440 hasPublicationYear "2022" @default.
- W4313002440 type Work @default.
- W4313002440 citedByCount "0" @default.
- W4313002440 crossrefType "journal-article" @default.
- W4313002440 hasAuthorship W4313002440A5031941911 @default.
- W4313002440 hasAuthorship W4313002440A5068106112 @default.
- W4313002440 hasAuthorship W4313002440A5075796989 @default.
- W4313002440 hasAuthorship W4313002440A5077783791 @default.
- W4313002440 hasBestOaLocation W43130024401 @default.
- W4313002440 hasConcept C107457646 @default.
- W4313002440 hasConcept C113843644 @default.
- W4313002440 hasConcept C121332964 @default.
- W4313002440 hasConcept C1276947 @default.
- W4313002440 hasConcept C129307140 @default.
- W4313002440 hasConcept C13662910 @default.
- W4313002440 hasConcept C150140777 @default.
- W4313002440 hasConcept C154945302 @default.
- W4313002440 hasConcept C157915830 @default.
- W4313002440 hasConcept C162324750 @default.
- W4313002440 hasConcept C166957645 @default.
- W4313002440 hasConcept C173608175 @default.
- W4313002440 hasConcept C187736073 @default.
- W4313002440 hasConcept C195324797 @default.
- W4313002440 hasConcept C199360897 @default.
- W4313002440 hasConcept C26517878 @default.
- W4313002440 hasConcept C2775924081 @default.
- W4313002440 hasConcept C2776608160 @default.
- W4313002440 hasConcept C2777735758 @default.
- W4313002440 hasConcept C2780451532 @default.
- W4313002440 hasConcept C2781238097 @default.
- W4313002440 hasConcept C38652104 @default.
- W4313002440 hasConcept C41008148 @default.
- W4313002440 hasConcept C95457728 @default.
- W4313002440 hasConceptScore W4313002440C107457646 @default.
- W4313002440 hasConceptScore W4313002440C113843644 @default.