Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313003225> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4313003225 endingPage "7061" @default.
- W4313003225 startingPage "7051" @default.
- W4313003225 abstract "In many domain-specific monitoring applications of wireless sensor networks (WSNs), such as structural health monitoring (SHM), volcano tomography, and machine diagnosis, all the raw data in WSNs are required to be gathered to the sink where a specialized centralized algorithm is then executed to extract some global features or model parameters. To reduce the large-scale raw data transmission while guaranteeing the global feature quality, there are two kinds of solutions: one is in-network processing, which generally needs to distribute the centralized computation of feature extraction into networks. Another solution is compressive sensing (CS) followed with the feature extraction (called feature CS in this article). An interesting question is: for in-network processing and feature CS, which kind of solutions is more cost efficient to accomplish the task of feature extraction? This question is seldom studied. To answer it, we take the case of SHM with WSNs along with the classic feature extraction algorithm, i.e., the Eigen-system realization algorithm (ERA), and appropriately design two novel routes for in-network processing and feature CS, respectively. Both theoretical analysis of the two solutions’transmission cost and numerous simulations have been conducted. Based on the comparison results, we summarize some guidelines on the solution choice for different kinds of WSNs for SHM. In addition, we find that, instead of guaranteeing the quality of raw data reconstructed, CS with guaranteeing the quality of feature extracted is usually more meaningful and cost efficient." @default.
- W4313003225 created "2023-01-05" @default.
- W4313003225 creator A5035564546 @default.
- W4313003225 creator A5054082208 @default.
- W4313003225 creator A5067414640 @default.
- W4313003225 creator A5072740925 @default.
- W4313003225 date "2023-04-15" @default.
- W4313003225 modified "2023-09-25" @default.
- W4313003225 title "In-Network Processing or Feature Compressive Sensing? Case Study of Structural Health Monitoring With Wireless Sensor Networks" @default.
- W4313003225 cites W1802314291 @default.
- W4313003225 cites W1964688354 @default.
- W4313003225 cites W1965940442 @default.
- W4313003225 cites W1977851207 @default.
- W4313003225 cites W1980840407 @default.
- W4313003225 cites W1987512222 @default.
- W4313003225 cites W1987838484 @default.
- W4313003225 cites W2021789809 @default.
- W4313003225 cites W2074756834 @default.
- W4313003225 cites W2099644548 @default.
- W4313003225 cites W2100037283 @default.
- W4313003225 cites W2123241700 @default.
- W4313003225 cites W2159808897 @default.
- W4313003225 cites W2329340938 @default.
- W4313003225 cites W2474565435 @default.
- W4313003225 cites W2551466703 @default.
- W4313003225 cites W2604808495 @default.
- W4313003225 cites W2735819193 @default.
- W4313003225 cites W2769383089 @default.
- W4313003225 cites W2793783688 @default.
- W4313003225 cites W2902335478 @default.
- W4313003225 cites W3116464686 @default.
- W4313003225 cites W3125366744 @default.
- W4313003225 cites W3145024293 @default.
- W4313003225 cites W3216941363 @default.
- W4313003225 cites W4210510442 @default.
- W4313003225 cites W4250955649 @default.
- W4313003225 doi "https://doi.org/10.1109/jiot.2022.3228587" @default.
- W4313003225 hasPublicationYear "2023" @default.
- W4313003225 type Work @default.
- W4313003225 citedByCount "0" @default.
- W4313003225 crossrefType "journal-article" @default.
- W4313003225 hasAuthorship W4313003225A5035564546 @default.
- W4313003225 hasAuthorship W4313003225A5054082208 @default.
- W4313003225 hasAuthorship W4313003225A5067414640 @default.
- W4313003225 hasAuthorship W4313003225A5072740925 @default.
- W4313003225 hasConcept C124101348 @default.
- W4313003225 hasConcept C138885662 @default.
- W4313003225 hasConcept C154945302 @default.
- W4313003225 hasConcept C24590314 @default.
- W4313003225 hasConcept C2776401178 @default.
- W4313003225 hasConcept C31258907 @default.
- W4313003225 hasConcept C41008148 @default.
- W4313003225 hasConcept C41895202 @default.
- W4313003225 hasConcept C52622490 @default.
- W4313003225 hasConcept C79403827 @default.
- W4313003225 hasConceptScore W4313003225C124101348 @default.
- W4313003225 hasConceptScore W4313003225C138885662 @default.
- W4313003225 hasConceptScore W4313003225C154945302 @default.
- W4313003225 hasConceptScore W4313003225C24590314 @default.
- W4313003225 hasConceptScore W4313003225C2776401178 @default.
- W4313003225 hasConceptScore W4313003225C31258907 @default.
- W4313003225 hasConceptScore W4313003225C41008148 @default.
- W4313003225 hasConceptScore W4313003225C41895202 @default.
- W4313003225 hasConceptScore W4313003225C52622490 @default.
- W4313003225 hasConceptScore W4313003225C79403827 @default.
- W4313003225 hasFunder F4320321001 @default.
- W4313003225 hasIssue "8" @default.
- W4313003225 hasLocation W43130032251 @default.
- W4313003225 hasOpenAccess W4313003225 @default.
- W4313003225 hasPrimaryLocation W43130032251 @default.
- W4313003225 hasRelatedWork W1977284501 @default.
- W4313003225 hasRelatedWork W2022364796 @default.
- W4313003225 hasRelatedWork W2382607599 @default.
- W4313003225 hasRelatedWork W2891194622 @default.
- W4313003225 hasRelatedWork W4210656569 @default.
- W4313003225 hasRelatedWork W4210922983 @default.
- W4313003225 hasRelatedWork W4281689716 @default.
- W4313003225 hasRelatedWork W4320802741 @default.
- W4313003225 hasRelatedWork W1593625692 @default.
- W4313003225 hasRelatedWork W3129408711 @default.
- W4313003225 hasVolume "10" @default.
- W4313003225 isParatext "false" @default.
- W4313003225 isRetracted "false" @default.
- W4313003225 workType "article" @default.