Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313005646> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4313005646 abstract "Estimating software projects is a challenging but necessary process in software development. Predicting the effort needed to build software is an essential part of the project life cycle. This paper examines a variety of machine learning algorithms for estimating effort. There has been a significant increase in research on effort estimation with machine learning approaches during the last two decades, with the objective of improving estimation accuracy. To forecast effort, the estimation techniques such as expert judgment, COCOMO, analogy based, putnam model, and machine learning are used. The algorithmic models’ low accuracy and unreliable architecture resulted in substantial software project risks. As a result, it is essential to predict the cost of project on an annual basis and compare it to alternative methods. However, the effort prediction using machine learning is still limited because a single technique cannot be treated as best. This paper’s main goal is to present a review of several machine learning approaches for predicting effort." @default.
- W4313005646 created "2023-01-05" @default.
- W4313005646 creator A5002148510 @default.
- W4313005646 creator A5072687836 @default.
- W4313005646 date "2022-07-01" @default.
- W4313005646 modified "2023-09-27" @default.
- W4313005646 title "A Systematic Literature Review of Machine Learning Techniques for Software Effort Estimation Models" @default.
- W4313005646 cites W140275599 @default.
- W4313005646 cites W1528741131 @default.
- W4313005646 cites W1528966910 @default.
- W4313005646 cites W2024303949 @default.
- W4313005646 cites W2066452975 @default.
- W4313005646 cites W2079870878 @default.
- W4313005646 cites W2154165923 @default.
- W4313005646 cites W2159747233 @default.
- W4313005646 cites W2178751732 @default.
- W4313005646 cites W2291002789 @default.
- W4313005646 cites W2312930835 @default.
- W4313005646 cites W2319131614 @default.
- W4313005646 cites W2489897787 @default.
- W4313005646 cites W2511742067 @default.
- W4313005646 cites W2770963638 @default.
- W4313005646 cites W2771809138 @default.
- W4313005646 cites W2898382817 @default.
- W4313005646 cites W2915649569 @default.
- W4313005646 cites W2971278379 @default.
- W4313005646 cites W2977451384 @default.
- W4313005646 cites W3007234946 @default.
- W4313005646 cites W3038246389 @default.
- W4313005646 cites W3047556187 @default.
- W4313005646 cites W3082858407 @default.
- W4313005646 cites W3153703445 @default.
- W4313005646 cites W3164552197 @default.
- W4313005646 cites W3175329215 @default.
- W4313005646 doi "https://doi.org/10.1109/ccict56684.2022.00093" @default.
- W4313005646 hasPublicationYear "2022" @default.
- W4313005646 type Work @default.
- W4313005646 citedByCount "0" @default.
- W4313005646 crossrefType "proceedings-article" @default.
- W4313005646 hasAuthorship W4313005646A5002148510 @default.
- W4313005646 hasAuthorship W4313005646A5072687836 @default.
- W4313005646 hasConcept C111919701 @default.
- W4313005646 hasConcept C117447612 @default.
- W4313005646 hasConcept C119857082 @default.
- W4313005646 hasConcept C127413603 @default.
- W4313005646 hasConcept C136197465 @default.
- W4313005646 hasConcept C154945302 @default.
- W4313005646 hasConcept C180152950 @default.
- W4313005646 hasConcept C186846655 @default.
- W4313005646 hasConcept C199360897 @default.
- W4313005646 hasConcept C201995342 @default.
- W4313005646 hasConcept C2777904410 @default.
- W4313005646 hasConcept C2780451532 @default.
- W4313005646 hasConcept C2781002164 @default.
- W4313005646 hasConcept C41008148 @default.
- W4313005646 hasConcept C529173508 @default.
- W4313005646 hasConcept C53238903 @default.
- W4313005646 hasConcept C82214349 @default.
- W4313005646 hasConcept C96250715 @default.
- W4313005646 hasConcept C98045186 @default.
- W4313005646 hasConceptScore W4313005646C111919701 @default.
- W4313005646 hasConceptScore W4313005646C117447612 @default.
- W4313005646 hasConceptScore W4313005646C119857082 @default.
- W4313005646 hasConceptScore W4313005646C127413603 @default.
- W4313005646 hasConceptScore W4313005646C136197465 @default.
- W4313005646 hasConceptScore W4313005646C154945302 @default.
- W4313005646 hasConceptScore W4313005646C180152950 @default.
- W4313005646 hasConceptScore W4313005646C186846655 @default.
- W4313005646 hasConceptScore W4313005646C199360897 @default.
- W4313005646 hasConceptScore W4313005646C201995342 @default.
- W4313005646 hasConceptScore W4313005646C2777904410 @default.
- W4313005646 hasConceptScore W4313005646C2780451532 @default.
- W4313005646 hasConceptScore W4313005646C2781002164 @default.
- W4313005646 hasConceptScore W4313005646C41008148 @default.
- W4313005646 hasConceptScore W4313005646C529173508 @default.
- W4313005646 hasConceptScore W4313005646C53238903 @default.
- W4313005646 hasConceptScore W4313005646C82214349 @default.
- W4313005646 hasConceptScore W4313005646C96250715 @default.
- W4313005646 hasConceptScore W4313005646C98045186 @default.
- W4313005646 hasLocation W43130056461 @default.
- W4313005646 hasOpenAccess W4313005646 @default.
- W4313005646 hasPrimaryLocation W43130056461 @default.
- W4313005646 hasRelatedWork W1583615723 @default.
- W4313005646 hasRelatedWork W2078619386 @default.
- W4313005646 hasRelatedWork W2088290112 @default.
- W4313005646 hasRelatedWork W2112392950 @default.
- W4313005646 hasRelatedWork W2326664034 @default.
- W4313005646 hasRelatedWork W2370461023 @default.
- W4313005646 hasRelatedWork W2615293967 @default.
- W4313005646 hasRelatedWork W3082111437 @default.
- W4313005646 hasRelatedWork W4313005646 @default.
- W4313005646 hasRelatedWork W824172107 @default.
- W4313005646 isParatext "false" @default.
- W4313005646 isRetracted "false" @default.
- W4313005646 workType "article" @default.