Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313006458> ?p ?o ?g. }
- W4313006458 endingPage "59" @default.
- W4313006458 startingPage "43" @default.
- W4313006458 abstract "Biomedical image analysis methods are gradually shifting towards computer-aided solutions from manual investigations to save time and improve the quality of the diagnosis. Deep learning-assisted biomedical image analysis is one of the major and active research areas. Several researchers are working in this domain because deep learning-assisted computer-aided diagnostic solutions are well known for their efficiency. In this chapter, a comprehensive overview of the deep learning-assisted biomedical image analysis methods is presented. This chapter can be helpful for the researchers to understand the recent developments and drawbacks of the present systems. The discussion is made from the perspective of the computer vision, pattern recognition, and artificial intelligence. This chapter can help to get future research directions to exploit the blessings of deep learning techniques for biomedical image analysis." @default.
- W4313006458 created "2023-01-05" @default.
- W4313006458 creator A5014680453 @default.
- W4313006458 creator A5084827792 @default.
- W4313006458 date "2022-09-09" @default.
- W4313006458 modified "2023-10-16" @default.
- W4313006458 title "An Overview of Biomedical Image Analysis From the Deep Learning Perspective" @default.
- W4313006458 cites W2103706175 @default.
- W4313006458 cites W2151367897 @default.
- W4313006458 cites W2155454737 @default.
- W4313006458 cites W2155893237 @default.
- W4313006458 cites W2335995717 @default.
- W4313006458 cites W2345010043 @default.
- W4313006458 cites W2398921440 @default.
- W4313006458 cites W2426274714 @default.
- W4313006458 cites W2470965540 @default.
- W4313006458 cites W2534853861 @default.
- W4313006458 cites W2551306950 @default.
- W4313006458 cites W2556840980 @default.
- W4313006458 cites W2560270720 @default.
- W4313006458 cites W2561060159 @default.
- W4313006458 cites W2574988749 @default.
- W4313006458 cites W2591669284 @default.
- W4313006458 cites W2592929672 @default.
- W4313006458 cites W2607941059 @default.
- W4313006458 cites W2616962113 @default.
- W4313006458 cites W2666784499 @default.
- W4313006458 cites W2734847897 @default.
- W4313006458 cites W2751723768 @default.
- W4313006458 cites W2759818938 @default.
- W4313006458 cites W2765722120 @default.
- W4313006458 cites W2766678701 @default.
- W4313006458 cites W2767156052 @default.
- W4313006458 cites W2768673271 @default.
- W4313006458 cites W2782771548 @default.
- W4313006458 cites W2782807556 @default.
- W4313006458 cites W2782993895 @default.
- W4313006458 cites W2783495416 @default.
- W4313006458 cites W2783998154 @default.
- W4313006458 cites W2798404363 @default.
- W4313006458 cites W2798787749 @default.
- W4313006458 cites W2798957370 @default.
- W4313006458 cites W2799248433 @default.
- W4313006458 cites W2804383999 @default.
- W4313006458 cites W2871166210 @default.
- W4313006458 cites W2885824662 @default.
- W4313006458 cites W2901217788 @default.
- W4313006458 cites W2943614712 @default.
- W4313006458 cites W2943787899 @default.
- W4313006458 cites W2945068367 @default.
- W4313006458 cites W2946901414 @default.
- W4313006458 cites W2949122205 @default.
- W4313006458 cites W2960940172 @default.
- W4313006458 cites W2962785888 @default.
- W4313006458 cites W2967536367 @default.
- W4313006458 cites W2972738461 @default.
- W4313006458 cites W2975620172 @default.
- W4313006458 cites W2979727943 @default.
- W4313006458 cites W2982562138 @default.
- W4313006458 cites W2990503426 @default.
- W4313006458 cites W2990632956 @default.
- W4313006458 cites W2990956143 @default.
- W4313006458 cites W2993238105 @default.
- W4313006458 cites W2999337073 @default.
- W4313006458 cites W3080379382 @default.
- W4313006458 cites W3101294892 @default.
- W4313006458 cites W4238921364 @default.
- W4313006458 cites W4249097696 @default.
- W4313006458 doi "https://doi.org/10.4018/978-1-6684-7544-7.ch003" @default.
- W4313006458 hasPublicationYear "2022" @default.
- W4313006458 type Work @default.
- W4313006458 citedByCount "5" @default.
- W4313006458 countsByYear W43130064582023 @default.
- W4313006458 crossrefType "book-chapter" @default.
- W4313006458 hasAuthorship W4313006458A5014680453 @default.
- W4313006458 hasAuthorship W4313006458A5084827792 @default.
- W4313006458 hasConcept C108583219 @default.
- W4313006458 hasConcept C115961682 @default.
- W4313006458 hasConcept C12713177 @default.
- W4313006458 hasConcept C134306372 @default.
- W4313006458 hasConcept C154945302 @default.
- W4313006458 hasConcept C165696696 @default.
- W4313006458 hasConcept C2522767166 @default.
- W4313006458 hasConcept C33923547 @default.
- W4313006458 hasConcept C36503486 @default.
- W4313006458 hasConcept C38652104 @default.
- W4313006458 hasConcept C41008148 @default.
- W4313006458 hasConceptScore W4313006458C108583219 @default.
- W4313006458 hasConceptScore W4313006458C115961682 @default.
- W4313006458 hasConceptScore W4313006458C12713177 @default.
- W4313006458 hasConceptScore W4313006458C134306372 @default.
- W4313006458 hasConceptScore W4313006458C154945302 @default.
- W4313006458 hasConceptScore W4313006458C165696696 @default.
- W4313006458 hasConceptScore W4313006458C2522767166 @default.
- W4313006458 hasConceptScore W4313006458C33923547 @default.
- W4313006458 hasConceptScore W4313006458C36503486 @default.
- W4313006458 hasConceptScore W4313006458C38652104 @default.
- W4313006458 hasConceptScore W4313006458C41008148 @default.