Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313010312> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4313010312 endingPage "1228" @default.
- W4313010312 startingPage "1216" @default.
- W4313010312 abstract "Accurate short-term load forecasting is essential to modern power systems and smart grids. The utility can better implement demand-side management and operate power system stably with a reliable load forecasting system. The load demand contains a variety of different load components, and different loads operate with different frequencies. The conventional load forecasting methods, e.g., linear regression (LR), auto-regressive integrated moving average (ARIMA), deep neural network, ignore the frequency domain and can only use time-domain load demand as inputs. To make full use of both time-domain and frequency-domain features of the load demand, a load forecasting method based on hybrid empirical wavelet transform (EWT) and deep neural network is proposed in this paper. The proposed method first filters noises via wavelet-based denoising technique, and then decomposes the original load demand into several sub-layers to show the frequency features while the time-domain information is preserved as well. Then, a bidirectional long short-term memory (LSTM) method is trained for each sub-layer independently. In order to better tune the hyper-parameters, a Bayesian hyperparameter optimization (BHO) algorithm is adopted in this paper. Three case studies are de-signed to evaluate the performance of the proposed method. From the results, it is found that the proposed method improves the prediction accuracy compared with other load forecasting method." @default.
- W4313010312 created "2023-01-05" @default.
- W4313010312 creator A5012082341 @default.
- W4313010312 creator A5032771817 @default.
- W4313010312 creator A5036734913 @default.
- W4313010312 creator A5079590996 @default.
- W4313010312 date "2022-01-01" @default.
- W4313010312 modified "2023-10-14" @default.
- W4313010312 title "Hybrid Short-term Load Forecasting Method Based on Empirical Wavelet Transform and Bidirectional Long Short-term Memory Neural Networks" @default.
- W4313010312 doi "https://doi.org/10.35833/mpce.2021.000276" @default.
- W4313010312 hasPublicationYear "2022" @default.
- W4313010312 type Work @default.
- W4313010312 citedByCount "6" @default.
- W4313010312 countsByYear W43130103122022 @default.
- W4313010312 countsByYear W43130103122023 @default.
- W4313010312 crossrefType "journal-article" @default.
- W4313010312 hasAuthorship W4313010312A5012082341 @default.
- W4313010312 hasAuthorship W4313010312A5032771817 @default.
- W4313010312 hasAuthorship W4313010312A5036734913 @default.
- W4313010312 hasAuthorship W4313010312A5079590996 @default.
- W4313010312 hasBestOaLocation W43130103121 @default.
- W4313010312 hasConcept C103824480 @default.
- W4313010312 hasConcept C10558101 @default.
- W4313010312 hasConcept C11413529 @default.
- W4313010312 hasConcept C119599485 @default.
- W4313010312 hasConcept C121332964 @default.
- W4313010312 hasConcept C127413603 @default.
- W4313010312 hasConcept C154945302 @default.
- W4313010312 hasConcept C163258240 @default.
- W4313010312 hasConcept C19118579 @default.
- W4313010312 hasConcept C193809577 @default.
- W4313010312 hasConcept C196216189 @default.
- W4313010312 hasConcept C21547014 @default.
- W4313010312 hasConcept C31972630 @default.
- W4313010312 hasConcept C41008148 @default.
- W4313010312 hasConcept C47432892 @default.
- W4313010312 hasConcept C50644808 @default.
- W4313010312 hasConcept C61797465 @default.
- W4313010312 hasConcept C62520636 @default.
- W4313010312 hasConcept C8642999 @default.
- W4313010312 hasConcept C89227174 @default.
- W4313010312 hasConceptScore W4313010312C103824480 @default.
- W4313010312 hasConceptScore W4313010312C10558101 @default.
- W4313010312 hasConceptScore W4313010312C11413529 @default.
- W4313010312 hasConceptScore W4313010312C119599485 @default.
- W4313010312 hasConceptScore W4313010312C121332964 @default.
- W4313010312 hasConceptScore W4313010312C127413603 @default.
- W4313010312 hasConceptScore W4313010312C154945302 @default.
- W4313010312 hasConceptScore W4313010312C163258240 @default.
- W4313010312 hasConceptScore W4313010312C19118579 @default.
- W4313010312 hasConceptScore W4313010312C193809577 @default.
- W4313010312 hasConceptScore W4313010312C196216189 @default.
- W4313010312 hasConceptScore W4313010312C21547014 @default.
- W4313010312 hasConceptScore W4313010312C31972630 @default.
- W4313010312 hasConceptScore W4313010312C41008148 @default.
- W4313010312 hasConceptScore W4313010312C47432892 @default.
- W4313010312 hasConceptScore W4313010312C50644808 @default.
- W4313010312 hasConceptScore W4313010312C61797465 @default.
- W4313010312 hasConceptScore W4313010312C62520636 @default.
- W4313010312 hasConceptScore W4313010312C8642999 @default.
- W4313010312 hasConceptScore W4313010312C89227174 @default.
- W4313010312 hasIssue "5" @default.
- W4313010312 hasLocation W43130103121 @default.
- W4313010312 hasOpenAccess W4313010312 @default.
- W4313010312 hasPrimaryLocation W43130103121 @default.
- W4313010312 hasRelatedWork W1642462315 @default.
- W4313010312 hasRelatedWork W1879092539 @default.
- W4313010312 hasRelatedWork W1895367623 @default.
- W4313010312 hasRelatedWork W1970292246 @default.
- W4313010312 hasRelatedWork W2005619368 @default.
- W4313010312 hasRelatedWork W2015118744 @default.
- W4313010312 hasRelatedWork W2065140124 @default.
- W4313010312 hasRelatedWork W2162306796 @default.
- W4313010312 hasRelatedWork W2782295999 @default.
- W4313010312 hasRelatedWork W4247952185 @default.
- W4313010312 hasVolume "10" @default.
- W4313010312 isParatext "false" @default.
- W4313010312 isRetracted "false" @default.
- W4313010312 workType "article" @default.