Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313012878> ?p ?o ?g. }
- W4313012878 endingPage "37" @default.
- W4313012878 startingPage "19" @default.
- W4313012878 abstract "Convolutional neural networks have been widely developed for hyperspectral image (HSI) restoration. However, making full use of the spatial-spectral information of HSIs still remains a challenge. In this work, we disentangle the 3D convolution into lightweight 2D spatial and spectral convolutions, and build a spectrum-aware search space for HSI restoration. Subsequently, we utilize neural architecture search strategy to automatically learn the most efficient architecture with proper convolutions and connections in order to fully exploit the spatial-spectral information. We also determine that the super-net with global and local skip connections can further boost HSI restoration performance. The proposed STAS is optimized in a noise independent mode to increase transferability. The searched architecture on the CAVE dataset has been adopted for various reconstruction tasks, and achieves remarkable performance. On the basis of fruitful experiments, we conclude that the transferability of searched architecture is dependent on the spectral information and independent of the noise levels." @default.
- W4313012878 created "2023-01-05" @default.
- W4313012878 creator A5024704138 @default.
- W4313012878 creator A5034435383 @default.
- W4313012878 creator A5035120678 @default.
- W4313012878 creator A5036283525 @default.
- W4313012878 creator A5042675351 @default.
- W4313012878 creator A5072484211 @default.
- W4313012878 date "2022-01-01" @default.
- W4313012878 modified "2023-09-30" @default.
- W4313012878 title "Spectrum-Aware and Transferable Architecture Search for Hyperspectral Image Restoration" @default.
- W4313012878 cites W1970099214 @default.
- W4313012878 cites W1994040806 @default.
- W4313012878 cites W2030270830 @default.
- W4313012878 cites W2095906131 @default.
- W4313012878 cites W2198155329 @default.
- W4313012878 cites W2462946880 @default.
- W4313012878 cites W2508457857 @default.
- W4313012878 cites W2520430674 @default.
- W4313012878 cites W2531409750 @default.
- W4313012878 cites W2533971697 @default.
- W4313012878 cites W2743606449 @default.
- W4313012878 cites W2747865121 @default.
- W4313012878 cites W2748530166 @default.
- W4313012878 cites W2770113520 @default.
- W4313012878 cites W2790888198 @default.
- W4313012878 cites W2802440232 @default.
- W4313012878 cites W2806155925 @default.
- W4313012878 cites W2884144629 @default.
- W4313012878 cites W2914736033 @default.
- W4313012878 cites W2963821229 @default.
- W4313012878 cites W2964179170 @default.
- W4313012878 cites W2964984565 @default.
- W4313012878 cites W2965658867 @default.
- W4313012878 cites W2983736948 @default.
- W4313012878 cites W2984522085 @default.
- W4313012878 cites W2990070112 @default.
- W4313012878 cites W2997123853 @default.
- W4313012878 cites W2998227662 @default.
- W4313012878 cites W2999482976 @default.
- W4313012878 cites W3013064625 @default.
- W4313012878 cites W3017506038 @default.
- W4313012878 cites W3034516944 @default.
- W4313012878 cites W3040902738 @default.
- W4313012878 cites W3090929676 @default.
- W4313012878 cites W3096533519 @default.
- W4313012878 cites W3096654432 @default.
- W4313012878 cites W3104899156 @default.
- W4313012878 cites W3107781032 @default.
- W4313012878 cites W3108567638 @default.
- W4313012878 cites W3118496544 @default.
- W4313012878 cites W3118513496 @default.
- W4313012878 cites W3140885850 @default.
- W4313012878 cites W3167197358 @default.
- W4313012878 cites W3173125503 @default.
- W4313012878 cites W3173882198 @default.
- W4313012878 cites W3184308560 @default.
- W4313012878 cites W3196711624 @default.
- W4313012878 cites W3198418006 @default.
- W4313012878 doi "https://doi.org/10.1007/978-3-031-19800-7_2" @default.
- W4313012878 hasPublicationYear "2022" @default.
- W4313012878 type Work @default.
- W4313012878 citedByCount "5" @default.
- W4313012878 countsByYear W43130128782023 @default.
- W4313012878 crossrefType "book-chapter" @default.
- W4313012878 hasAuthorship W4313012878A5024704138 @default.
- W4313012878 hasAuthorship W4313012878A5034435383 @default.
- W4313012878 hasAuthorship W4313012878A5035120678 @default.
- W4313012878 hasAuthorship W4313012878A5036283525 @default.
- W4313012878 hasAuthorship W4313012878A5042675351 @default.
- W4313012878 hasAuthorship W4313012878A5072484211 @default.
- W4313012878 hasConcept C106430172 @default.
- W4313012878 hasConcept C115961682 @default.
- W4313012878 hasConcept C123657996 @default.
- W4313012878 hasConcept C124101348 @default.
- W4313012878 hasConcept C153180895 @default.
- W4313012878 hasConcept C154945302 @default.
- W4313012878 hasConcept C159078339 @default.
- W4313012878 hasConcept C165696696 @default.
- W4313012878 hasConcept C166957645 @default.
- W4313012878 hasConcept C205649164 @default.
- W4313012878 hasConcept C31972630 @default.
- W4313012878 hasConcept C38652104 @default.
- W4313012878 hasConcept C41008148 @default.
- W4313012878 hasConcept C45347329 @default.
- W4313012878 hasConcept C50644808 @default.
- W4313012878 hasConcept C81363708 @default.
- W4313012878 hasConcept C9417928 @default.
- W4313012878 hasConcept C99498987 @default.
- W4313012878 hasConceptScore W4313012878C106430172 @default.
- W4313012878 hasConceptScore W4313012878C115961682 @default.
- W4313012878 hasConceptScore W4313012878C123657996 @default.
- W4313012878 hasConceptScore W4313012878C124101348 @default.
- W4313012878 hasConceptScore W4313012878C153180895 @default.
- W4313012878 hasConceptScore W4313012878C154945302 @default.
- W4313012878 hasConceptScore W4313012878C159078339 @default.
- W4313012878 hasConceptScore W4313012878C165696696 @default.
- W4313012878 hasConceptScore W4313012878C166957645 @default.