Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313013579> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313013579 endingPage "6112" @default.
- W4313013579 startingPage "6103" @default.
- W4313013579 abstract "Hybrid precoding based on an adaptive-connected structure is one of the promising technologies for millimeter-wave communications, which achieves a good tradeoff between spectral efficiency and power consumption by deploying a switch-controlled connection between the antennas and radio frequency chains. To maximally enhance the energy efficiency while maintaining superior spectral efficiency of hybrid precoding, a novel deep learning-based optimization algorithm is presented for an adaptive fully-connected (AFC) structure in this paper. Firstly, two special convolutional neural network (CNN) frameworks are designed to optimize the phase shift precoding matrix and switch precoding matrix with hardware constraints, namely CNN-Fps and CNN-Fs respectively. Furthermore, a CNN-based joint optimization network is developed, named as CNN-JO network, which can simultaneously optimize the CNN-Fps and CNN-Fs subnetworks, such that the optimal analog precoding matrix is obtained. Then, using the fully digital optimal precoder as the training label, the proposed CNN-JO network can be trained to maximize the energy efficiency of the AFC structure. Finally, the well-trained CNN-JO model can accept the estimated channel matrix as the input and directly output the phase shift precoding matrix, switch precoding matrix, and digital precoding matrix. Simulation results and complexity analysis show that the proposed algorithm can achieve better performance than the previous works in terms of energy efficiency and spectral efficiency with a lower complexity." @default.
- W4313013579 created "2023-01-05" @default.
- W4313013579 creator A5024586315 @default.
- W4313013579 creator A5032088876 @default.
- W4313013579 creator A5032493243 @default.
- W4313013579 creator A5070139134 @default.
- W4313013579 creator A5075705249 @default.
- W4313013579 date "2023-05-01" @default.
- W4313013579 modified "2023-10-03" @default.
- W4313013579 title "DL-Based Energy-Efficient Hybrid Precoding for mmWave Massive MIMO Systems" @default.
- W4313013579 cites W1432778544 @default.
- W4313013579 cites W1533172747 @default.
- W4313013579 cites W2004294022 @default.
- W4313013579 cites W2053521124 @default.
- W4313013579 cites W2130509920 @default.
- W4313013579 cites W2163363194 @default.
- W4313013579 cites W2259391824 @default.
- W4313013579 cites W2469174679 @default.
- W4313013579 cites W2623122370 @default.
- W4313013579 cites W2789126652 @default.
- W4313013579 cites W2905083742 @default.
- W4313013579 cites W2909794597 @default.
- W4313013579 cites W2914191282 @default.
- W4313013579 cites W2943928690 @default.
- W4313013579 cites W2963182751 @default.
- W4313013579 cites W2984176297 @default.
- W4313013579 cites W3086007150 @default.
- W4313013579 cites W3100956256 @default.
- W4313013579 cites W3104804153 @default.
- W4313013579 cites W3105095353 @default.
- W4313013579 cites W3105650387 @default.
- W4313013579 cites W4313728508 @default.
- W4313013579 doi "https://doi.org/10.1109/tvt.2022.3230931" @default.
- W4313013579 hasPublicationYear "2023" @default.
- W4313013579 type Work @default.
- W4313013579 citedByCount "1" @default.
- W4313013579 crossrefType "journal-article" @default.
- W4313013579 hasAuthorship W4313013579A5024586315 @default.
- W4313013579 hasAuthorship W4313013579A5032088876 @default.
- W4313013579 hasAuthorship W4313013579A5032493243 @default.
- W4313013579 hasAuthorship W4313013579A5070139134 @default.
- W4313013579 hasAuthorship W4313013579A5075705249 @default.
- W4313013579 hasConcept C11413529 @default.
- W4313013579 hasConcept C119599485 @default.
- W4313013579 hasConcept C127162648 @default.
- W4313013579 hasConcept C127413603 @default.
- W4313013579 hasConcept C137246740 @default.
- W4313013579 hasConcept C155437304 @default.
- W4313013579 hasConcept C160562895 @default.
- W4313013579 hasConcept C207987634 @default.
- W4313013579 hasConcept C24326235 @default.
- W4313013579 hasConcept C2742236 @default.
- W4313013579 hasConcept C41008148 @default.
- W4313013579 hasConcept C76155785 @default.
- W4313013579 hasConceptScore W4313013579C11413529 @default.
- W4313013579 hasConceptScore W4313013579C119599485 @default.
- W4313013579 hasConceptScore W4313013579C127162648 @default.
- W4313013579 hasConceptScore W4313013579C127413603 @default.
- W4313013579 hasConceptScore W4313013579C137246740 @default.
- W4313013579 hasConceptScore W4313013579C155437304 @default.
- W4313013579 hasConceptScore W4313013579C160562895 @default.
- W4313013579 hasConceptScore W4313013579C207987634 @default.
- W4313013579 hasConceptScore W4313013579C24326235 @default.
- W4313013579 hasConceptScore W4313013579C2742236 @default.
- W4313013579 hasConceptScore W4313013579C41008148 @default.
- W4313013579 hasConceptScore W4313013579C76155785 @default.
- W4313013579 hasFunder F4320321001 @default.
- W4313013579 hasFunder F4320322163 @default.
- W4313013579 hasIssue "5" @default.
- W4313013579 hasLocation W43130135791 @default.
- W4313013579 hasOpenAccess W4313013579 @default.
- W4313013579 hasPrimaryLocation W43130135791 @default.
- W4313013579 hasRelatedWork W1976511355 @default.
- W4313013579 hasRelatedWork W2884911846 @default.
- W4313013579 hasRelatedWork W2949308295 @default.
- W4313013579 hasRelatedWork W2999797590 @default.
- W4313013579 hasRelatedWork W3116618050 @default.
- W4313013579 hasRelatedWork W3126185803 @default.
- W4313013579 hasRelatedWork W4200428847 @default.
- W4313013579 hasRelatedWork W4300868555 @default.
- W4313013579 hasRelatedWork W4381162408 @default.
- W4313013579 hasRelatedWork W4384518455 @default.
- W4313013579 hasVolume "72" @default.
- W4313013579 isParatext "false" @default.
- W4313013579 isRetracted "false" @default.
- W4313013579 workType "article" @default.