Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313013988> ?p ?o ?g. }
- W4313013988 endingPage "2899" @default.
- W4313013988 startingPage "2891" @default.
- W4313013988 abstract "Acoustic tomography (AT) is considered a promising visualization technique for gas temperature distribution (TD). Generally, a temperature map of a region of interest (ROI) is reconstructed with acoustic velocities of multiple routes inside the ROI using an AT reconstruction algorithm. To improve the accuracy of the reconstruction, increasing the number of iterations is inevitable, which may be time-consuming. Besides, existing reconstruction algorithms rarely consider utilizing practical measurements to improve their performance. In this study, a convolutional neural network (CNN) is proposed to train a machine-learning model that can reconstruct a gas TD from acoustic velocities. By adjusting the label and the loss function, a practical training approach was found. Six models were successfully trained to reconstruct a gas TD. Two were trained with the ideal TD, three were trained with a reconstructed TD, and one was trained with temperatures from specific locations. After that, a TD with peak temperatures located in 13 different positions was applied to test the models’ performance in tracking the hot spot. The results were compared with an existing reconstruction method. Besides, the acoustic velocities from three gas TDs were applied to evaluate the 2-D visualization performance. One of them was similar to the training data and the other two were different. The results indicated that the models trained with the ideal gas TD could track the hot spot more closely, and the models trained with reconstructed gas TDs had similar performance as the selected reconstruction algorithm. However, the 2-D visualization results using models trained with the ideal gas TD were poor compared with models trained with reconstructed TDs when the input acoustic velocities were different from the training data. This indicated that the proposed method could successfully learn the relationship between TD and acoustic velocities from an ordinary reconstruction algorithm. Furthermore, the execution time of the proposed model was 0.109 s, which is 96% less than the selected iterative reconstruction method. Consequently, the proposed neural networks should be considered a reliable and efficient 2-D gas TD reconstruction methodology." @default.
- W4313013988 created "2023-01-05" @default.
- W4313013988 creator A5008220468 @default.
- W4313013988 creator A5025342245 @default.
- W4313013988 creator A5043066572 @default.
- W4313013988 creator A5045064652 @default.
- W4313013988 creator A5052052817 @default.
- W4313013988 creator A5062274770 @default.
- W4313013988 creator A5065168933 @default.
- W4313013988 creator A5075582474 @default.
- W4313013988 creator A5086894985 @default.
- W4313013988 creator A5067274927 @default.
- W4313013988 date "2023-02-01" @default.
- W4313013988 modified "2023-09-25" @default.
- W4313013988 title "Reconstructing 2-D Gas Temperature Distribution With Deep Neural Networks" @default.
- W4313013988 cites W1967851754 @default.
- W4313013988 cites W1987270072 @default.
- W4313013988 cites W1988669479 @default.
- W4313013988 cites W2004895663 @default.
- W4313013988 cites W2055697826 @default.
- W4313013988 cites W2062076790 @default.
- W4313013988 cites W2071167575 @default.
- W4313013988 cites W2072991566 @default.
- W4313013988 cites W2594492967 @default.
- W4313013988 cites W2597313254 @default.
- W4313013988 cites W2615787079 @default.
- W4313013988 cites W2756227990 @default.
- W4313013988 cites W2893483035 @default.
- W4313013988 cites W2911715295 @default.
- W4313013988 cites W2915399670 @default.
- W4313013988 cites W2954588378 @default.
- W4313013988 cites W2990870162 @default.
- W4313013988 cites W3008234019 @default.
- W4313013988 cites W3047729951 @default.
- W4313013988 cites W3092400693 @default.
- W4313013988 cites W3118518055 @default.
- W4313013988 cites W3128937453 @default.
- W4313013988 cites W3171829097 @default.
- W4313013988 cites W4240518936 @default.
- W4313013988 doi "https://doi.org/10.1109/jsen.2022.3228269" @default.
- W4313013988 hasPublicationYear "2023" @default.
- W4313013988 type Work @default.
- W4313013988 citedByCount "0" @default.
- W4313013988 crossrefType "journal-article" @default.
- W4313013988 hasAuthorship W4313013988A5008220468 @default.
- W4313013988 hasAuthorship W4313013988A5025342245 @default.
- W4313013988 hasAuthorship W4313013988A5043066572 @default.
- W4313013988 hasAuthorship W4313013988A5045064652 @default.
- W4313013988 hasAuthorship W4313013988A5052052817 @default.
- W4313013988 hasAuthorship W4313013988A5062274770 @default.
- W4313013988 hasAuthorship W4313013988A5065168933 @default.
- W4313013988 hasAuthorship W4313013988A5067274927 @default.
- W4313013988 hasAuthorship W4313013988A5075582474 @default.
- W4313013988 hasAuthorship W4313013988A5086894985 @default.
- W4313013988 hasConcept C111472728 @default.
- W4313013988 hasConcept C11413529 @default.
- W4313013988 hasConcept C138885662 @default.
- W4313013988 hasConcept C141379421 @default.
- W4313013988 hasConcept C153180895 @default.
- W4313013988 hasConcept C154945302 @default.
- W4313013988 hasConcept C19609008 @default.
- W4313013988 hasConcept C2776639384 @default.
- W4313013988 hasConcept C31972630 @default.
- W4313013988 hasConcept C36464697 @default.
- W4313013988 hasConcept C41008148 @default.
- W4313013988 hasConcept C50644808 @default.
- W4313013988 hasConcept C81363708 @default.
- W4313013988 hasConceptScore W4313013988C111472728 @default.
- W4313013988 hasConceptScore W4313013988C11413529 @default.
- W4313013988 hasConceptScore W4313013988C138885662 @default.
- W4313013988 hasConceptScore W4313013988C141379421 @default.
- W4313013988 hasConceptScore W4313013988C153180895 @default.
- W4313013988 hasConceptScore W4313013988C154945302 @default.
- W4313013988 hasConceptScore W4313013988C19609008 @default.
- W4313013988 hasConceptScore W4313013988C2776639384 @default.
- W4313013988 hasConceptScore W4313013988C31972630 @default.
- W4313013988 hasConceptScore W4313013988C36464697 @default.
- W4313013988 hasConceptScore W4313013988C41008148 @default.
- W4313013988 hasConceptScore W4313013988C50644808 @default.
- W4313013988 hasConceptScore W4313013988C81363708 @default.
- W4313013988 hasFunder F4320328207 @default.
- W4313013988 hasIssue "3" @default.
- W4313013988 hasLocation W43130139881 @default.
- W4313013988 hasOpenAccess W4313013988 @default.
- W4313013988 hasPrimaryLocation W43130139881 @default.
- W4313013988 hasRelatedWork W2147832946 @default.
- W4313013988 hasRelatedWork W2175746458 @default.
- W4313013988 hasRelatedWork W2406522397 @default.
- W4313013988 hasRelatedWork W2613736958 @default.
- W4313013988 hasRelatedWork W2732542196 @default.
- W4313013988 hasRelatedWork W2738221750 @default.
- W4313013988 hasRelatedWork W2760085659 @default.
- W4313013988 hasRelatedWork W2912288872 @default.
- W4313013988 hasRelatedWork W3012978760 @default.
- W4313013988 hasRelatedWork W3093612317 @default.
- W4313013988 hasVolume "23" @default.
- W4313013988 isParatext "false" @default.
- W4313013988 isRetracted "false" @default.