Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313014559> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4313014559 abstract "Monitoring vegetation is of great importance for many applications, for example agriculture or forestry. Commonly, the normalized difference vegetation index (NDVI) of spaceborn sensor is utilized for this task. However, as the NDVI is derived from multispectral optical data, cloud coverage prevents the acquisition of useful values. This results in data and monitoring gaps. Generally, this can be avoided using cloud penetrating radar sensors but the different sensing method and different image characteristics hamper the easy usage of the data. Therefore, in this paper a method is presented to allow global cloud-independent vegetation monitoring by estimating the NDVI from radar data using a deep learning model. The used U-Net architecture is trained on a newly created dataset called SEN12TP of globally distributed radar and optical imagery with a small difference in acquisition time. The resulting performance is evaluated and different input modalities are compared. Additionally, the ability of this approach to densify NDVI time series is demonstrated." @default.
- W4313014559 created "2023-01-05" @default.
- W4313014559 creator A5005835703 @default.
- W4313014559 creator A5058601965 @default.
- W4313014559 date "2022-07-17" @default.
- W4313014559 modified "2023-10-08" @default.
- W4313014559 title "Estimating NDVI from Sentinel-1 Sar Data Using Deep Learning" @default.
- W4313014559 cites W1999635212 @default.
- W4313014559 cites W2028191110 @default.
- W4313014559 cites W2047554957 @default.
- W4313014559 cites W2101108516 @default.
- W4313014559 cites W2134086511 @default.
- W4313014559 cites W2167594433 @default.
- W4313014559 cites W2778936354 @default.
- W4313014559 cites W2953239899 @default.
- W4313014559 cites W3085271102 @default.
- W4313014559 cites W3177445326 @default.
- W4313014559 cites W3206979022 @default.
- W4313014559 cites W4210542845 @default.
- W4313014559 doi "https://doi.org/10.1109/igarss46834.2022.9883707" @default.
- W4313014559 hasPublicationYear "2022" @default.
- W4313014559 type Work @default.
- W4313014559 citedByCount "1" @default.
- W4313014559 countsByYear W43130145592023 @default.
- W4313014559 crossrefType "proceedings-article" @default.
- W4313014559 hasAuthorship W4313014559A5005835703 @default.
- W4313014559 hasAuthorship W4313014559A5058601965 @default.
- W4313014559 hasConcept C104541649 @default.
- W4313014559 hasConcept C10929652 @default.
- W4313014559 hasConcept C111368507 @default.
- W4313014559 hasConcept C111919701 @default.
- W4313014559 hasConcept C119857082 @default.
- W4313014559 hasConcept C127313418 @default.
- W4313014559 hasConcept C132651083 @default.
- W4313014559 hasConcept C142724271 @default.
- W4313014559 hasConcept C151406439 @default.
- W4313014559 hasConcept C1549246 @default.
- W4313014559 hasConcept C163985040 @default.
- W4313014559 hasConcept C173163844 @default.
- W4313014559 hasConcept C205649164 @default.
- W4313014559 hasConcept C2776133958 @default.
- W4313014559 hasConcept C39432304 @default.
- W4313014559 hasConcept C41008148 @default.
- W4313014559 hasConcept C554190296 @default.
- W4313014559 hasConcept C62649853 @default.
- W4313014559 hasConcept C71924100 @default.
- W4313014559 hasConcept C76155785 @default.
- W4313014559 hasConcept C79974875 @default.
- W4313014559 hasConceptScore W4313014559C104541649 @default.
- W4313014559 hasConceptScore W4313014559C10929652 @default.
- W4313014559 hasConceptScore W4313014559C111368507 @default.
- W4313014559 hasConceptScore W4313014559C111919701 @default.
- W4313014559 hasConceptScore W4313014559C119857082 @default.
- W4313014559 hasConceptScore W4313014559C127313418 @default.
- W4313014559 hasConceptScore W4313014559C132651083 @default.
- W4313014559 hasConceptScore W4313014559C142724271 @default.
- W4313014559 hasConceptScore W4313014559C151406439 @default.
- W4313014559 hasConceptScore W4313014559C1549246 @default.
- W4313014559 hasConceptScore W4313014559C163985040 @default.
- W4313014559 hasConceptScore W4313014559C173163844 @default.
- W4313014559 hasConceptScore W4313014559C205649164 @default.
- W4313014559 hasConceptScore W4313014559C2776133958 @default.
- W4313014559 hasConceptScore W4313014559C39432304 @default.
- W4313014559 hasConceptScore W4313014559C41008148 @default.
- W4313014559 hasConceptScore W4313014559C554190296 @default.
- W4313014559 hasConceptScore W4313014559C62649853 @default.
- W4313014559 hasConceptScore W4313014559C71924100 @default.
- W4313014559 hasConceptScore W4313014559C76155785 @default.
- W4313014559 hasConceptScore W4313014559C79974875 @default.
- W4313014559 hasFunder F4320336060 @default.
- W4313014559 hasLocation W43130145591 @default.
- W4313014559 hasOpenAccess W4313014559 @default.
- W4313014559 hasPrimaryLocation W43130145591 @default.
- W4313014559 hasRelatedWork W1498247086 @default.
- W4313014559 hasRelatedWork W2002189733 @default.
- W4313014559 hasRelatedWork W2175650306 @default.
- W4313014559 hasRelatedWork W2413001789 @default.
- W4313014559 hasRelatedWork W2582212497 @default.
- W4313014559 hasRelatedWork W2768326488 @default.
- W4313014559 hasRelatedWork W3027311362 @default.
- W4313014559 hasRelatedWork W3031909544 @default.
- W4313014559 hasRelatedWork W3131311955 @default.
- W4313014559 hasRelatedWork W3165608898 @default.
- W4313014559 isParatext "false" @default.
- W4313014559 isRetracted "false" @default.
- W4313014559 workType "article" @default.