Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313014832> ?p ?o ?g. }
- W4313014832 endingPage "466" @default.
- W4313014832 startingPage "447" @default.
- W4313014832 abstract "In the present chapter, we use the empirical mode decomposition (EMD), the ensemble EMD (EEMD), and the complete ensemble EMD with adaptive noise (CEEMDAN) for dissolved oxygen (DO) prediction. First, based on water temperature (Tw), DO was modeled using three machines learning models, namely, extreme learning machine (ELM), the ELM optimized Bat algorithm (Bat-ELM), and relevance vector machine (RVM). Second, river Tw was decomposed using EMD, EEMD, and CEEMDAN into several intrinsic mode functions (IMF), which were used as input to the ELM, Bat-ELM, and RVM. The performances of the models were evaluated using the root mean square error (RMSE), mean absolute error (MAE), coefficient of correlation (R), and the Nash-Sutcliffe efficiency (NSE). From the obtained results, the models based on EMD, EEMD, and CEEMDAN estimated DO highly more accurate than the single models, with mean RMSE, MAE, R, and NSE of 0.835°C, 0.571°C, 0.965, and 0.930 against the values of 2.788°C, 2.232°C, 0.511, and 0.250, respectively." @default.
- W4313014832 created "2023-01-05" @default.
- W4313014832 creator A5006743557 @default.
- W4313014832 creator A5016315589 @default.
- W4313014832 creator A5042564078 @default.
- W4313014832 creator A5059823880 @default.
- W4313014832 date "2022-01-01" @default.
- W4313014832 modified "2023-10-16" @default.
- W4313014832 title "Hybrid extreme learning machine optimized bat algorithm based on ensemble empirical mode decomposition for modeling dissolved oxygen in river" @default.
- W4313014832 cites W2007221293 @default.
- W4313014832 cites W2022173539 @default.
- W4313014832 cites W2062861257 @default.
- W4313014832 cites W2111072639 @default.
- W4313014832 cites W2120390927 @default.
- W4313014832 cites W2502511820 @default.
- W4313014832 cites W2751185093 @default.
- W4313014832 cites W2758887415 @default.
- W4313014832 cites W2801998166 @default.
- W4313014832 cites W2871832352 @default.
- W4313014832 cites W2885097378 @default.
- W4313014832 cites W2898065605 @default.
- W4313014832 cites W2904896091 @default.
- W4313014832 cites W2913364315 @default.
- W4313014832 cites W2938161931 @default.
- W4313014832 cites W2966395277 @default.
- W4313014832 cites W2973128936 @default.
- W4313014832 cites W2981897990 @default.
- W4313014832 cites W3000665644 @default.
- W4313014832 cites W3006101764 @default.
- W4313014832 cites W3017254662 @default.
- W4313014832 cites W3017258208 @default.
- W4313014832 cites W3025519219 @default.
- W4313014832 cites W3027457525 @default.
- W4313014832 cites W3033661296 @default.
- W4313014832 cites W3046781693 @default.
- W4313014832 cites W3093064140 @default.
- W4313014832 cites W3094287283 @default.
- W4313014832 cites W3095239916 @default.
- W4313014832 cites W3123712479 @default.
- W4313014832 cites W3131869181 @default.
- W4313014832 cites W3135110616 @default.
- W4313014832 cites W3136106209 @default.
- W4313014832 cites W3138653141 @default.
- W4313014832 cites W3140993386 @default.
- W4313014832 cites W3151640016 @default.
- W4313014832 cites W3154817805 @default.
- W4313014832 cites W3158936606 @default.
- W4313014832 cites W3164775596 @default.
- W4313014832 cites W3170103022 @default.
- W4313014832 cites W3173373210 @default.
- W4313014832 cites W3176787227 @default.
- W4313014832 cites W3197065975 @default.
- W4313014832 cites W3197641978 @default.
- W4313014832 cites W4200248625 @default.
- W4313014832 cites W842171740 @default.
- W4313014832 doi "https://doi.org/10.1016/b978-0-323-91910-4.00025-x" @default.
- W4313014832 hasPublicationYear "2022" @default.
- W4313014832 type Work @default.
- W4313014832 citedByCount "0" @default.
- W4313014832 crossrefType "book-chapter" @default.
- W4313014832 hasAuthorship W4313014832A5006743557 @default.
- W4313014832 hasAuthorship W4313014832A5016315589 @default.
- W4313014832 hasAuthorship W4313014832A5042564078 @default.
- W4313014832 hasAuthorship W4313014832A5059823880 @default.
- W4313014832 hasConcept C105795698 @default.
- W4313014832 hasConcept C112633086 @default.
- W4313014832 hasConcept C11413529 @default.
- W4313014832 hasConcept C115961682 @default.
- W4313014832 hasConcept C119857082 @default.
- W4313014832 hasConcept C12267149 @default.
- W4313014832 hasConcept C139945424 @default.
- W4313014832 hasConcept C14948415 @default.
- W4313014832 hasConcept C153180895 @default.
- W4313014832 hasConcept C154945302 @default.
- W4313014832 hasConcept C25570617 @default.
- W4313014832 hasConcept C2780092901 @default.
- W4313014832 hasConcept C2780150128 @default.
- W4313014832 hasConcept C33923547 @default.
- W4313014832 hasConcept C41008148 @default.
- W4313014832 hasConcept C50644808 @default.
- W4313014832 hasConcept C99498987 @default.
- W4313014832 hasConceptScore W4313014832C105795698 @default.
- W4313014832 hasConceptScore W4313014832C112633086 @default.
- W4313014832 hasConceptScore W4313014832C11413529 @default.
- W4313014832 hasConceptScore W4313014832C115961682 @default.
- W4313014832 hasConceptScore W4313014832C119857082 @default.
- W4313014832 hasConceptScore W4313014832C12267149 @default.
- W4313014832 hasConceptScore W4313014832C139945424 @default.
- W4313014832 hasConceptScore W4313014832C14948415 @default.
- W4313014832 hasConceptScore W4313014832C153180895 @default.
- W4313014832 hasConceptScore W4313014832C154945302 @default.
- W4313014832 hasConceptScore W4313014832C25570617 @default.
- W4313014832 hasConceptScore W4313014832C2780092901 @default.
- W4313014832 hasConceptScore W4313014832C2780150128 @default.
- W4313014832 hasConceptScore W4313014832C33923547 @default.
- W4313014832 hasConceptScore W4313014832C41008148 @default.
- W4313014832 hasConceptScore W4313014832C50644808 @default.
- W4313014832 hasConceptScore W4313014832C99498987 @default.