Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313015293> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313015293 endingPage "124082" @default.
- W4313015293 startingPage "124076" @default.
- W4313015293 abstract "The etiology of Temporomandibular disorders (TMD) is still unclear, and its symptoms, signs and progression are extremely complex. TMD require early diagnosis and treatments, especially for combinations with other oral diseases. The research targets at developing an artificial neural network (ANN) model for predicting TMD based on clinical-collected data including clinical features, systematic medical condition, and psychosocial state. The popular data mining-based ANN was utilized to predict TMD with all 18 variables collected from patients as the input. The total dataset consists of 88 cases which were reviewed by Board-certificated orthodontists. 75% (66) cases are randomly selected as the training dataset, while the remaining 25% (22) cases are for test. Among the considered 88 cases, 58 (65.9%) were with TMD, while the left 30 (34.1%) without TMD. The numbers of male and female were 21 and 67, respectively, while the average age was 27.63 years. The calculated average sensitivity and specificity of ANN-based TMD risk predictions through 10-fold-cross-validation analysis were 92.31% (95% confidence interval (CI), 62.09%-99.60%) and 88.89% (95% CI, 50.67%-99.42%), respectively. Moreover, the accuracy rate of ANN was 90.91% (95% CI, 78.90%-100.00%). The results show the proposed ANN model could predict the TMD risks with a high accuracy rate, indicating the potential of machine learning in oral and maxillofacial diseases screening and diagnosis, which was further illustrated in a comparison with two doctors. This study can help dental care providers to find individuals’ risk of TMD by inputting patient’s psychological factors, oral examinations, and systemic medical conditions to the developed artificial intelligence (AI) model." @default.
- W4313015293 created "2023-01-05" @default.
- W4313015293 creator A5015739734 @default.
- W4313015293 creator A5038808394 @default.
- W4313015293 creator A5063911030 @default.
- W4313015293 creator A5088280718 @default.
- W4313015293 date "2022-01-01" @default.
- W4313015293 modified "2023-09-25" @default.
- W4313015293 title "Assisting in Diagnosis of Temporomandibular Disorders: A Deep Learning Approach" @default.
- W4313015293 cites W2011545725 @default.
- W4313015293 cites W2044445522 @default.
- W4313015293 cites W2102023379 @default.
- W4313015293 cites W2168392310 @default.
- W4313015293 cites W2423124209 @default.
- W4313015293 cites W2440269909 @default.
- W4313015293 cites W2494714626 @default.
- W4313015293 cites W2528305538 @default.
- W4313015293 cites W2765757954 @default.
- W4313015293 cites W2803632165 @default.
- W4313015293 cites W2807410584 @default.
- W4313015293 cites W2883741661 @default.
- W4313015293 cites W2905810301 @default.
- W4313015293 cites W2943162041 @default.
- W4313015293 cites W2965207724 @default.
- W4313015293 cites W3023749651 @default.
- W4313015293 cites W3025590102 @default.
- W4313015293 cites W3037428051 @default.
- W4313015293 cites W3037776079 @default.
- W4313015293 cites W3044073403 @default.
- W4313015293 cites W3082963120 @default.
- W4313015293 cites W3084108182 @default.
- W4313015293 cites W3086029940 @default.
- W4313015293 cites W3101790025 @default.
- W4313015293 cites W3118732567 @default.
- W4313015293 cites W3119195445 @default.
- W4313015293 cites W3203701301 @default.
- W4313015293 cites W3212330997 @default.
- W4313015293 cites W4210645561 @default.
- W4313015293 cites W4245265600 @default.
- W4313015293 cites W4283158699 @default.
- W4313015293 cites W4284669942 @default.
- W4313015293 cites W4293067524 @default.
- W4313015293 doi "https://doi.org/10.1109/access.2022.3224055" @default.
- W4313015293 hasPublicationYear "2022" @default.
- W4313015293 type Work @default.
- W4313015293 citedByCount "0" @default.
- W4313015293 crossrefType "journal-article" @default.
- W4313015293 hasAuthorship W4313015293A5015739734 @default.
- W4313015293 hasAuthorship W4313015293A5038808394 @default.
- W4313015293 hasAuthorship W4313015293A5063911030 @default.
- W4313015293 hasAuthorship W4313015293A5088280718 @default.
- W4313015293 hasBestOaLocation W43130152931 @default.
- W4313015293 hasConcept C118552586 @default.
- W4313015293 hasConcept C119857082 @default.
- W4313015293 hasConcept C126322002 @default.
- W4313015293 hasConcept C137627325 @default.
- W4313015293 hasConcept C142724271 @default.
- W4313015293 hasConcept C150966472 @default.
- W4313015293 hasConcept C41008148 @default.
- W4313015293 hasConcept C44249647 @default.
- W4313015293 hasConcept C534262118 @default.
- W4313015293 hasConcept C71924100 @default.
- W4313015293 hasConceptScore W4313015293C118552586 @default.
- W4313015293 hasConceptScore W4313015293C119857082 @default.
- W4313015293 hasConceptScore W4313015293C126322002 @default.
- W4313015293 hasConceptScore W4313015293C137627325 @default.
- W4313015293 hasConceptScore W4313015293C142724271 @default.
- W4313015293 hasConceptScore W4313015293C150966472 @default.
- W4313015293 hasConceptScore W4313015293C41008148 @default.
- W4313015293 hasConceptScore W4313015293C44249647 @default.
- W4313015293 hasConceptScore W4313015293C534262118 @default.
- W4313015293 hasConceptScore W4313015293C71924100 @default.
- W4313015293 hasFunder F4320336350 @default.
- W4313015293 hasLocation W43130152931 @default.
- W4313015293 hasOpenAccess W4313015293 @default.
- W4313015293 hasPrimaryLocation W43130152931 @default.
- W4313015293 hasRelatedWork W1568698627 @default.
- W4313015293 hasRelatedWork W1997799263 @default.
- W4313015293 hasRelatedWork W2382228590 @default.
- W4313015293 hasRelatedWork W2412965123 @default.
- W4313015293 hasRelatedWork W2465854091 @default.
- W4313015293 hasRelatedWork W2499533089 @default.
- W4313015293 hasRelatedWork W2508992384 @default.
- W4313015293 hasRelatedWork W3002986063 @default.
- W4313015293 hasRelatedWork W3010015868 @default.
- W4313015293 hasRelatedWork W4322705554 @default.
- W4313015293 hasVolume "10" @default.
- W4313015293 isParatext "false" @default.
- W4313015293 isRetracted "false" @default.
- W4313015293 workType "article" @default.