Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313015940> ?p ?o ?g. }
- W4313015940 endingPage "126844" @default.
- W4313015940 startingPage "126832" @default.
- W4313015940 abstract "The early 21st-century technological advancements tilted the scales towards data-driven learning. Thus, modern machine-learning systems rely heavily on data to learn complex models to efficiently provide relevant predictions. Data-driven learning suffers from overfitting, a situation in which the learning process seems to have converged into a model that, unfortunately, lacks generalization power. One way to withstand overfitting is to expand the training dataset with more diverse samples. Typically, this is implemented (particularly in computer vision research, which is of interest in this study) by multiplying the original sample using several transformations. Although this strategy might seem straightforward, it does not affect any preexisting dataset bias because the initial distribution remains more or less similar. Ideally, new samples of unseen data must be found, but the cost of acquiring them individually is high. This study presents a novel pipeline that combines state-of-the-art modules to automatically create new thematic datasets with low bias. The proposed method was able to acquire and allocate more than 880K previously unseen images to produce a data collection, that InceptionV3 classified it with 72% accuracy and achieved 0.0008 performance variance when testing on similar datasets." @default.
- W4313015940 created "2023-01-05" @default.
- W4313015940 creator A5003731715 @default.
- W4313015940 creator A5056689376 @default.
- W4313015940 creator A5058515747 @default.
- W4313015940 creator A5084139328 @default.
- W4313015940 date "2022-01-01" @default.
- W4313015940 modified "2023-10-14" @default.
- W4313015940 title "Tackling Dataset Bias With an Automated Collection of Real-World Samples" @default.
- W4313015940 cites W12634471 @default.
- W4313015940 cites W1578226009 @default.
- W4313015940 cites W1722318740 @default.
- W4313015940 cites W1784617778 @default.
- W4313015940 cites W1852255964 @default.
- W4313015940 cites W1902405276 @default.
- W4313015940 cites W1964856489 @default.
- W4313015940 cites W1973682096 @default.
- W4313015940 cites W1975517671 @default.
- W4313015940 cites W1982522767 @default.
- W4313015940 cites W1994529543 @default.
- W4313015940 cites W1998197760 @default.
- W4313015940 cites W2017512655 @default.
- W4313015940 cites W2018573225 @default.
- W4313015940 cites W2024922353 @default.
- W4313015940 cites W2031342017 @default.
- W4313015940 cites W2031489346 @default.
- W4313015940 cites W2069057437 @default.
- W4313015940 cites W2081580037 @default.
- W4313015940 cites W2096761622 @default.
- W4313015940 cites W2104068492 @default.
- W4313015940 cites W2105847589 @default.
- W4313015940 cites W2106409489 @default.
- W4313015940 cites W2108598243 @default.
- W4313015940 cites W2110764733 @default.
- W4313015940 cites W2123053055 @default.
- W4313015940 cites W2130448385 @default.
- W4313015940 cites W2143238378 @default.
- W4313015940 cites W2155251704 @default.
- W4313015940 cites W2155904486 @default.
- W4313015940 cites W2183341477 @default.
- W4313015940 cites W2194775991 @default.
- W4313015940 cites W2239239723 @default.
- W4313015940 cites W2507181749 @default.
- W4313015940 cites W2524029660 @default.
- W4313015940 cites W2533598788 @default.
- W4313015940 cites W2561529111 @default.
- W4313015940 cites W2604123379 @default.
- W4313015940 cites W2757251151 @default.
- W4313015940 cites W2963163009 @default.
- W4313015940 cites W2964168984 @default.
- W4313015940 cites W2981631843 @default.
- W4313015940 cites W3015304982 @default.
- W4313015940 cites W3092609815 @default.
- W4313015940 cites W3093234244 @default.
- W4313015940 cites W3101225052 @default.
- W4313015940 cites W3132238463 @default.
- W4313015940 cites W3154512428 @default.
- W4313015940 doi "https://doi.org/10.1109/access.2022.3226517" @default.
- W4313015940 hasPublicationYear "2022" @default.
- W4313015940 type Work @default.
- W4313015940 citedByCount "0" @default.
- W4313015940 crossrefType "journal-article" @default.
- W4313015940 hasAuthorship W4313015940A5003731715 @default.
- W4313015940 hasAuthorship W4313015940A5056689376 @default.
- W4313015940 hasAuthorship W4313015940A5058515747 @default.
- W4313015940 hasAuthorship W4313015940A5084139328 @default.
- W4313015940 hasBestOaLocation W43130159401 @default.
- W4313015940 hasConcept C105795698 @default.
- W4313015940 hasConcept C111919701 @default.
- W4313015940 hasConcept C119857082 @default.
- W4313015940 hasConcept C121955636 @default.
- W4313015940 hasConcept C124101348 @default.
- W4313015940 hasConcept C133462117 @default.
- W4313015940 hasConcept C134306372 @default.
- W4313015940 hasConcept C144133560 @default.
- W4313015940 hasConcept C154945302 @default.
- W4313015940 hasConcept C177148314 @default.
- W4313015940 hasConcept C185592680 @default.
- W4313015940 hasConcept C196083921 @default.
- W4313015940 hasConcept C198531522 @default.
- W4313015940 hasConcept C199360897 @default.
- W4313015940 hasConcept C22019652 @default.
- W4313015940 hasConcept C33923547 @default.
- W4313015940 hasConcept C41008148 @default.
- W4313015940 hasConcept C43521106 @default.
- W4313015940 hasConcept C43617362 @default.
- W4313015940 hasConcept C50644808 @default.
- W4313015940 hasConcept C98045186 @default.
- W4313015940 hasConceptScore W4313015940C105795698 @default.
- W4313015940 hasConceptScore W4313015940C111919701 @default.
- W4313015940 hasConceptScore W4313015940C119857082 @default.
- W4313015940 hasConceptScore W4313015940C121955636 @default.
- W4313015940 hasConceptScore W4313015940C124101348 @default.
- W4313015940 hasConceptScore W4313015940C133462117 @default.
- W4313015940 hasConceptScore W4313015940C134306372 @default.
- W4313015940 hasConceptScore W4313015940C144133560 @default.
- W4313015940 hasConceptScore W4313015940C154945302 @default.
- W4313015940 hasConceptScore W4313015940C177148314 @default.