Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313016045> ?p ?o ?g. }
- W4313016045 endingPage "4782" @default.
- W4313016045 startingPage "4770" @default.
- W4313016045 abstract "Internet of Medical Things (IoMT) is igniting many emerging smart health applications, by continuously streaming the big data for data-driven innovations. One critical obstacle in IoMT big data is the power hungriness of long-term data transmission. Targeting this challenge, we propose a novel framework called, IoMT big-data Bayesian-backward deep-encoder learning (IBBD), which mines deep autoencoder (AE) configurations for data sparsification and determines optimal tradeoffs between information loss and power overhead. More specifically, the IBBD framework leverages an additional external Bayesian-backward loop that recommends AE configurations, on top of a traditional deep learning loop that executes and evaluate the AE quality. The IBBD recommendation is based on confidence to further minimize the regularized metrics that quantify the quality of AE configurations, and it further leverages regularization techniques to allow adjusting error–power tradeoffs in the mining process. We have conducted thorough experiments on a cardiac data streaming application and demonstrated the superiority of IBBD over the common practices such as discrete wavelet transform, and we have further generalized IBBD through validating the optimal AE configurations determined on one user to other users. This study is expected to greatly advance IoMT big data streaming practices toward precision medicine." @default.
- W4313016045 created "2023-01-05" @default.
- W4313016045 creator A5004969615 @default.
- W4313016045 creator A5008324840 @default.
- W4313016045 creator A5009147954 @default.
- W4313016045 creator A5071582434 @default.
- W4313016045 date "2023-03-15" @default.
- W4313016045 modified "2023-10-01" @default.
- W4313016045 title "Efficient IoT Big Data Streaming With Deep-Learning-Enabled Dynamics" @default.
- W4313016045 cites W2005741784 @default.
- W4313016045 cites W2095409369 @default.
- W4313016045 cites W2104655872 @default.
- W4313016045 cites W2117063635 @default.
- W4313016045 cites W2118286367 @default.
- W4313016045 cites W2162800060 @default.
- W4313016045 cites W2756336019 @default.
- W4313016045 cites W2799335795 @default.
- W4313016045 cites W2801690207 @default.
- W4313016045 cites W2891561751 @default.
- W4313016045 cites W2903167507 @default.
- W4313016045 cites W2903273597 @default.
- W4313016045 cites W2916129379 @default.
- W4313016045 cites W2943662519 @default.
- W4313016045 cites W2955070708 @default.
- W4313016045 cites W2969967921 @default.
- W4313016045 cites W2991304911 @default.
- W4313016045 cites W3004851563 @default.
- W4313016045 cites W3006740354 @default.
- W4313016045 cites W3029100345 @default.
- W4313016045 cites W3034474794 @default.
- W4313016045 cites W3102853592 @default.
- W4313016045 cites W3128566938 @default.
- W4313016045 cites W3132991382 @default.
- W4313016045 cites W3177503265 @default.
- W4313016045 cites W4206126837 @default.
- W4313016045 cites W4210423040 @default.
- W4313016045 cites W4220981635 @default.
- W4313016045 cites W4225926485 @default.
- W4313016045 cites W4235606958 @default.
- W4313016045 cites W4253366578 @default.
- W4313016045 cites W4287888440 @default.
- W4313016045 doi "https://doi.org/10.1109/jiot.2022.3221080" @default.
- W4313016045 hasPublicationYear "2023" @default.
- W4313016045 type Work @default.
- W4313016045 citedByCount "1" @default.
- W4313016045 countsByYear W43130160452023 @default.
- W4313016045 crossrefType "journal-article" @default.
- W4313016045 hasAuthorship W4313016045A5004969615 @default.
- W4313016045 hasAuthorship W4313016045A5008324840 @default.
- W4313016045 hasAuthorship W4313016045A5009147954 @default.
- W4313016045 hasAuthorship W4313016045A5071582434 @default.
- W4313016045 hasBestOaLocation W43130160452 @default.
- W4313016045 hasConcept C101738243 @default.
- W4313016045 hasConcept C108583219 @default.
- W4313016045 hasConcept C111919701 @default.
- W4313016045 hasConcept C118505674 @default.
- W4313016045 hasConcept C119857082 @default.
- W4313016045 hasConcept C124101348 @default.
- W4313016045 hasConcept C154945302 @default.
- W4313016045 hasConcept C2776135515 @default.
- W4313016045 hasConcept C2779960059 @default.
- W4313016045 hasConcept C41008148 @default.
- W4313016045 hasConcept C67186912 @default.
- W4313016045 hasConcept C75684735 @default.
- W4313016045 hasConcept C77088390 @default.
- W4313016045 hasConcept C79403827 @default.
- W4313016045 hasConceptScore W4313016045C101738243 @default.
- W4313016045 hasConceptScore W4313016045C108583219 @default.
- W4313016045 hasConceptScore W4313016045C111919701 @default.
- W4313016045 hasConceptScore W4313016045C118505674 @default.
- W4313016045 hasConceptScore W4313016045C119857082 @default.
- W4313016045 hasConceptScore W4313016045C124101348 @default.
- W4313016045 hasConceptScore W4313016045C154945302 @default.
- W4313016045 hasConceptScore W4313016045C2776135515 @default.
- W4313016045 hasConceptScore W4313016045C2779960059 @default.
- W4313016045 hasConceptScore W4313016045C41008148 @default.
- W4313016045 hasConceptScore W4313016045C67186912 @default.
- W4313016045 hasConceptScore W4313016045C75684735 @default.
- W4313016045 hasConceptScore W4313016045C77088390 @default.
- W4313016045 hasConceptScore W4313016045C79403827 @default.
- W4313016045 hasIssue "6" @default.
- W4313016045 hasLocation W43130160451 @default.
- W4313016045 hasLocation W43130160452 @default.
- W4313016045 hasOpenAccess W4313016045 @default.
- W4313016045 hasPrimaryLocation W43130160451 @default.
- W4313016045 hasRelatedWork W2567271240 @default.
- W4313016045 hasRelatedWork W2788487394 @default.
- W4313016045 hasRelatedWork W2922457425 @default.
- W4313016045 hasRelatedWork W2989980351 @default.
- W4313016045 hasRelatedWork W3002526821 @default.
- W4313016045 hasRelatedWork W3014300295 @default.
- W4313016045 hasRelatedWork W3044458868 @default.
- W4313016045 hasRelatedWork W4213225422 @default.
- W4313016045 hasRelatedWork W4250304930 @default.
- W4313016045 hasRelatedWork W4289656111 @default.
- W4313016045 hasVolume "10" @default.
- W4313016045 isParatext "false" @default.
- W4313016045 isRetracted "false" @default.