Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313016605> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W4313016605 abstract "Weakly-supervised anomaly detection refers to extracting the information to identify anomalies from the limited labeled anomalies. Existing work has used the deviation network to learn the anomaly score end-to-end, which treats unlabeled data as normal data, and makes the output score of labeled anomalies deviate greatly from the normal data. However, due to the diversity of anomaly types, the model trained by limited labeled anomaly is one-sided, and can not be generalized to identify other types of anomalies. Simply treating unlabeled data as normal data can not extract features from unlabeled data to improve the generalization and accuracy of the model. In this paper, a triplet deviation network framework(TDNF) is proposed. Compared with the original deviation network, it adds a potential anomalies filtering module and a prior anomaly score generation module. The potential anomalies filtering module ensemble multiple unsupervised methods to evaluate data and filter potential anomalies. Labeled anomalies, potential anomalies, unlabeled data compose multiple triplets, and input to deviation network to improve the ability of the model to identify different types of anomalies. The prior anomaly score generation module uses one unsupervised method to generate normalized prior anomaly scores. The prior anomaly scores as prior knowledge of deviation network, which help to fine-tune the model's learning of unlabeled data to optimize the model's ability of anomaly ranking for unlabeled data. We give a triplet deviation network instance TDN-IHSC and carry out extensive experiments on multiple real-world datasets. The results show that our method is effective and performs better than the other four advanced competitive methods." @default.
- W4313016605 created "2023-01-05" @default.
- W4313016605 creator A5007481575 @default.
- W4313016605 creator A5018282444 @default.
- W4313016605 creator A5021158772 @default.
- W4313016605 creator A5037263298 @default.
- W4313016605 creator A5039180109 @default.
- W4313016605 date "2022-07-18" @default.
- W4313016605 modified "2023-10-16" @default.
- W4313016605 title "A Triplet Deviation Network Framework: Boosting Weakly-supervised Anomaly Detection By Ensemble Learning" @default.
- W4313016605 cites W2099940443 @default.
- W4313016605 cites W2132870739 @default.
- W4313016605 cites W2296719434 @default.
- W4313016605 cites W2799033092 @default.
- W4313016605 cites W2807955733 @default.
- W4313016605 cites W2949848919 @default.
- W4313016605 cites W2963167376 @default.
- W4313016605 cites W2998336824 @default.
- W4313016605 cites W3006520502 @default.
- W4313016605 cites W3013839707 @default.
- W4313016605 cites W3015799890 @default.
- W4313016605 cites W3034418897 @default.
- W4313016605 cites W3084758420 @default.
- W4313016605 cites W3098759121 @default.
- W4313016605 cites W3102476541 @default.
- W4313016605 cites W3110264553 @default.
- W4313016605 cites W3128465814 @default.
- W4313016605 cites W3186285674 @default.
- W4313016605 cites W3212093293 @default.
- W4313016605 cites W3217619324 @default.
- W4313016605 cites W4253461361 @default.
- W4313016605 cites W4254182148 @default.
- W4313016605 cites W4283815292 @default.
- W4313016605 doi "https://doi.org/10.1109/ijcnn55064.2022.9892290" @default.
- W4313016605 hasPublicationYear "2022" @default.
- W4313016605 type Work @default.
- W4313016605 citedByCount "0" @default.
- W4313016605 crossrefType "proceedings-article" @default.
- W4313016605 hasAuthorship W4313016605A5007481575 @default.
- W4313016605 hasAuthorship W4313016605A5018282444 @default.
- W4313016605 hasAuthorship W4313016605A5021158772 @default.
- W4313016605 hasAuthorship W4313016605A5037263298 @default.
- W4313016605 hasAuthorship W4313016605A5039180109 @default.
- W4313016605 hasConcept C119857082 @default.
- W4313016605 hasConcept C121332964 @default.
- W4313016605 hasConcept C12997251 @default.
- W4313016605 hasConcept C136389625 @default.
- W4313016605 hasConcept C153180895 @default.
- W4313016605 hasConcept C154945302 @default.
- W4313016605 hasConcept C26873012 @default.
- W4313016605 hasConcept C41008148 @default.
- W4313016605 hasConcept C45942800 @default.
- W4313016605 hasConcept C46686674 @default.
- W4313016605 hasConcept C50644808 @default.
- W4313016605 hasConcept C739882 @default.
- W4313016605 hasConceptScore W4313016605C119857082 @default.
- W4313016605 hasConceptScore W4313016605C121332964 @default.
- W4313016605 hasConceptScore W4313016605C12997251 @default.
- W4313016605 hasConceptScore W4313016605C136389625 @default.
- W4313016605 hasConceptScore W4313016605C153180895 @default.
- W4313016605 hasConceptScore W4313016605C154945302 @default.
- W4313016605 hasConceptScore W4313016605C26873012 @default.
- W4313016605 hasConceptScore W4313016605C41008148 @default.
- W4313016605 hasConceptScore W4313016605C45942800 @default.
- W4313016605 hasConceptScore W4313016605C46686674 @default.
- W4313016605 hasConceptScore W4313016605C50644808 @default.
- W4313016605 hasConceptScore W4313016605C739882 @default.
- W4313016605 hasLocation W43130166051 @default.
- W4313016605 hasOpenAccess W4313016605 @default.
- W4313016605 hasPrimaryLocation W43130166051 @default.
- W4313016605 hasRelatedWork W2783038087 @default.
- W4313016605 hasRelatedWork W2971104761 @default.
- W4313016605 hasRelatedWork W3014666486 @default.
- W4313016605 hasRelatedWork W3151529617 @default.
- W4313016605 hasRelatedWork W4225307033 @default.
- W4313016605 hasRelatedWork W4283016678 @default.
- W4313016605 hasRelatedWork W4292969247 @default.
- W4313016605 hasRelatedWork W4293069612 @default.
- W4313016605 hasRelatedWork W4313488044 @default.
- W4313016605 hasRelatedWork W4375930479 @default.
- W4313016605 isParatext "false" @default.
- W4313016605 isRetracted "false" @default.
- W4313016605 workType "article" @default.