Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313017110> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4313017110 abstract "Bangladesh is a predominantly agricultural nation. The majority of people depend on agriculture. But it is a sad fact that the quality and quantity of our fruits are declining due to numerous diseases. People in our nation are discovering numerous new unusual diseases in our native fruits, but we are failing to diagnose these diseases, and the severity of this issue is growing daily. So, to combat this issue, suitable treatment or recuperation is required. Since we live in a technological age, it goes without saying that technology may be quite helpful in identifying these ailments. As the health of a plant depends on its leaves, it is crucial to first identify any tree diseases. As a result, we can prevent illness from spreading to the tree and fruit. We are trying to identify tree and leaf diseases through our research. Research into lychee tree disease is something we are highly interested in. Therefore, by preventing sickness in our lychee fruit, we can contribute to the Bangladeshi economy. We use cutting-edge image processing methods that are very beneficial to us to guarantee the freshness of the leaves. By simply looking at the leaves, it is quite difficult to identify any disease. Our system uses a cutting-edge method called image processing. For this, we use the method CNN (Convolutional Neural Network) based transfer learning classification algorithm. In this, we use the VGG16, InceptionV3, and Xception algorithm and as a result, the Inception-V3 model beat the other two models with a maximum accuracy of 92.67%, which indicate the successful outcome of this study." @default.
- W4313017110 created "2023-01-05" @default.
- W4313017110 creator A5042260087 @default.
- W4313017110 creator A5053122758 @default.
- W4313017110 creator A5070913731 @default.
- W4313017110 creator A5080471292 @default.
- W4313017110 date "2022-10-03" @default.
- W4313017110 modified "2023-10-16" @default.
- W4313017110 title "Lychee Tree Disease Classification and Prediction using Transfer Learning" @default.
- W4313017110 cites W2010879166 @default.
- W4313017110 cites W2101551647 @default.
- W4313017110 cites W2249162905 @default.
- W4313017110 cites W2605256398 @default.
- W4313017110 cites W2618859641 @default.
- W4313017110 cites W2999278897 @default.
- W4313017110 cites W3004621594 @default.
- W4313017110 cites W3028613351 @default.
- W4313017110 cites W3128223453 @default.
- W4313017110 cites W3183512578 @default.
- W4313017110 cites W3183606774 @default.
- W4313017110 cites W3205337742 @default.
- W4313017110 cites W3213744338 @default.
- W4313017110 cites W4200556753 @default.
- W4313017110 cites W4226520610 @default.
- W4313017110 cites W4302995120 @default.
- W4313017110 doi "https://doi.org/10.1109/icccnt54827.2022.9984286" @default.
- W4313017110 hasPublicationYear "2022" @default.
- W4313017110 type Work @default.
- W4313017110 citedByCount "1" @default.
- W4313017110 countsByYear W43130171102023 @default.
- W4313017110 crossrefType "proceedings-article" @default.
- W4313017110 hasAuthorship W4313017110A5042260087 @default.
- W4313017110 hasAuthorship W4313017110A5053122758 @default.
- W4313017110 hasAuthorship W4313017110A5070913731 @default.
- W4313017110 hasAuthorship W4313017110A5080471292 @default.
- W4313017110 hasConcept C113174947 @default.
- W4313017110 hasConcept C118518473 @default.
- W4313017110 hasConcept C119857082 @default.
- W4313017110 hasConcept C134306372 @default.
- W4313017110 hasConcept C142724271 @default.
- W4313017110 hasConcept C150899416 @default.
- W4313017110 hasConcept C154945302 @default.
- W4313017110 hasConcept C162307627 @default.
- W4313017110 hasConcept C166957645 @default.
- W4313017110 hasConcept C205649164 @default.
- W4313017110 hasConcept C2779134260 @default.
- W4313017110 hasConcept C33923547 @default.
- W4313017110 hasConcept C41008148 @default.
- W4313017110 hasConcept C71924100 @default.
- W4313017110 hasConcept C81363708 @default.
- W4313017110 hasConceptScore W4313017110C113174947 @default.
- W4313017110 hasConceptScore W4313017110C118518473 @default.
- W4313017110 hasConceptScore W4313017110C119857082 @default.
- W4313017110 hasConceptScore W4313017110C134306372 @default.
- W4313017110 hasConceptScore W4313017110C142724271 @default.
- W4313017110 hasConceptScore W4313017110C150899416 @default.
- W4313017110 hasConceptScore W4313017110C154945302 @default.
- W4313017110 hasConceptScore W4313017110C162307627 @default.
- W4313017110 hasConceptScore W4313017110C166957645 @default.
- W4313017110 hasConceptScore W4313017110C205649164 @default.
- W4313017110 hasConceptScore W4313017110C2779134260 @default.
- W4313017110 hasConceptScore W4313017110C33923547 @default.
- W4313017110 hasConceptScore W4313017110C41008148 @default.
- W4313017110 hasConceptScore W4313017110C71924100 @default.
- W4313017110 hasConceptScore W4313017110C81363708 @default.
- W4313017110 hasLocation W43130171101 @default.
- W4313017110 hasOpenAccess W4313017110 @default.
- W4313017110 hasPrimaryLocation W43130171101 @default.
- W4313017110 hasRelatedWork W2972069047 @default.
- W4313017110 hasRelatedWork W3012393889 @default.
- W4313017110 hasRelatedWork W3091976719 @default.
- W4313017110 hasRelatedWork W3135818718 @default.
- W4313017110 hasRelatedWork W3189091156 @default.
- W4313017110 hasRelatedWork W3192840557 @default.
- W4313017110 hasRelatedWork W4206156330 @default.
- W4313017110 hasRelatedWork W4312501200 @default.
- W4313017110 hasRelatedWork W4313050734 @default.
- W4313017110 hasRelatedWork W4366224123 @default.
- W4313017110 isParatext "false" @default.
- W4313017110 isRetracted "false" @default.
- W4313017110 workType "article" @default.