Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313017257> ?p ?o ?g. }
- W4313017257 endingPage "118653" @default.
- W4313017257 startingPage "118639" @default.
- W4313017257 abstract "Unequal data distribution among different classes usually cause a class imbalance problem. Due to the class imbalance, the classification models become biased toward the majority class and misclassify the minority class. Class imbalance issue becomes more complex when it occurs in multi-class data. The most common method to handle the class imbalance is data resampling that involves either over-sampling minority class instances or under-sampling majority class instances. In the case of under-sampling, there is a chance of losing some crucial information, whereas over-sampling can cause an overfitting problem. Therefore, we propose a novel Cluster-based Hybrid Sampling for Imbalance Data (CBHSID) strategy to address these issues. We calculate the mean of the data observations based on the number of classes. CBHSID uses the calculated mean as a threshold value to segregate majority and minority classes. We apply affinity propagation cluster analysis to each class to create sub-clusters. We calculate the distance of each data item of sub-cluster using centroid mean. We remove data observations that are away from the center of sub-cluster during under-sampling. On the other hand, during the over-sampling, we generate synthetic samples using data observations near to the center of sub-cluster. We compared our proposed approach with a few state-of-the-art data balancing methods on 12 binary and 4 multi-class benchmark datasets. Based on Geometric-Mean (G-Mean), Recall, and F1-score, our method outperformed the other compared methods on 14 datasets out of 16. We identified that CBHSID is suitable for addressing class imbalance issues in both binary and multi-class classifications. In the current state, we have only validated CBHSID on stationary data streams. Consequently, CBHSID can further be tested on non-stationary data streams in online learning environments." @default.
- W4313017257 created "2023-01-05" @default.
- W4313017257 creator A5001544486 @default.
- W4313017257 creator A5038826600 @default.
- W4313017257 creator A5056101465 @default.
- W4313017257 creator A5071380196 @default.
- W4313017257 creator A5087944375 @default.
- W4313017257 date "2022-01-01" @default.
- W4313017257 modified "2023-10-09" @default.
- W4313017257 title "A Hybrid Sampling Approach for Imbalanced Binary and Multi-Class Data Using Clustering Analysis" @default.
- W4313017257 cites W1563938718 @default.
- W4313017257 cites W1591261915 @default.
- W4313017257 cites W1678356000 @default.
- W4313017257 cites W1988790447 @default.
- W4313017257 cites W2016944307 @default.
- W4313017257 cites W2022348393 @default.
- W4313017257 cites W2061090972 @default.
- W4313017257 cites W2070534370 @default.
- W4313017257 cites W2087240369 @default.
- W4313017257 cites W2106479238 @default.
- W4313017257 cites W2107686700 @default.
- W4313017257 cites W2118978333 @default.
- W4313017257 cites W2128965734 @default.
- W4313017257 cites W2133506114 @default.
- W4313017257 cites W2139167497 @default.
- W4313017257 cites W2148143831 @default.
- W4313017257 cites W2156357252 @default.
- W4313017257 cites W2158896888 @default.
- W4313017257 cites W2162020807 @default.
- W4313017257 cites W2165232124 @default.
- W4313017257 cites W2338318698 @default.
- W4313017257 cites W2343742239 @default.
- W4313017257 cites W2490420619 @default.
- W4313017257 cites W2512345558 @default.
- W4313017257 cites W2562319768 @default.
- W4313017257 cites W2592842236 @default.
- W4313017257 cites W2604756720 @default.
- W4313017257 cites W2606176882 @default.
- W4313017257 cites W2625392185 @default.
- W4313017257 cites W2767106145 @default.
- W4313017257 cites W2787038389 @default.
- W4313017257 cites W2806416578 @default.
- W4313017257 cites W2810292802 @default.
- W4313017257 cites W2896206046 @default.
- W4313017257 cites W2903283628 @default.
- W4313017257 cites W2903362744 @default.
- W4313017257 cites W2908465383 @default.
- W4313017257 cites W2911964244 @default.
- W4313017257 cites W2922656120 @default.
- W4313017257 cites W2955573982 @default.
- W4313017257 cites W2961333734 @default.
- W4313017257 cites W2971644666 @default.
- W4313017257 cites W2984432074 @default.
- W4313017257 cites W3000057629 @default.
- W4313017257 cites W3033266910 @default.
- W4313017257 cites W3086403350 @default.
- W4313017257 cites W3119983836 @default.
- W4313017257 cites W3172818083 @default.
- W4313017257 cites W3216092102 @default.
- W4313017257 cites W4200217704 @default.
- W4313017257 cites W4212883601 @default.
- W4313017257 cites W4290861158 @default.
- W4313017257 cites W4292170267 @default.
- W4313017257 doi "https://doi.org/10.1109/access.2022.3218463" @default.
- W4313017257 hasPublicationYear "2022" @default.
- W4313017257 type Work @default.
- W4313017257 citedByCount "3" @default.
- W4313017257 countsByYear W43130172572023 @default.
- W4313017257 crossrefType "journal-article" @default.
- W4313017257 hasAuthorship W4313017257A5001544486 @default.
- W4313017257 hasAuthorship W4313017257A5038826600 @default.
- W4313017257 hasAuthorship W4313017257A5056101465 @default.
- W4313017257 hasAuthorship W4313017257A5071380196 @default.
- W4313017257 hasAuthorship W4313017257A5087944375 @default.
- W4313017257 hasBestOaLocation W43130172571 @default.
- W4313017257 hasConcept C105795698 @default.
- W4313017257 hasConcept C106131492 @default.
- W4313017257 hasConcept C124101348 @default.
- W4313017257 hasConcept C13280743 @default.
- W4313017257 hasConcept C140779682 @default.
- W4313017257 hasConcept C146599234 @default.
- W4313017257 hasConcept C153180895 @default.
- W4313017257 hasConcept C154945302 @default.
- W4313017257 hasConcept C185798385 @default.
- W4313017257 hasConcept C205649164 @default.
- W4313017257 hasConcept C22019652 @default.
- W4313017257 hasConcept C2777212361 @default.
- W4313017257 hasConcept C31972630 @default.
- W4313017257 hasConcept C33923547 @default.
- W4313017257 hasConcept C41008148 @default.
- W4313017257 hasConcept C50644808 @default.
- W4313017257 hasConcept C73555534 @default.
- W4313017257 hasConceptScore W4313017257C105795698 @default.
- W4313017257 hasConceptScore W4313017257C106131492 @default.
- W4313017257 hasConceptScore W4313017257C124101348 @default.
- W4313017257 hasConceptScore W4313017257C13280743 @default.
- W4313017257 hasConceptScore W4313017257C140779682 @default.
- W4313017257 hasConceptScore W4313017257C146599234 @default.