Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313017837> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313017837 endingPage "10" @default.
- W4313017837 startingPage "1" @default.
- W4313017837 abstract "Permanent magnet-based tracking (PMT) approach is a reliable solution for motion tracking and navigation. The conventional PMT for tracking one or more magnets is based on optimization algorithms such as Levenberg-Marquardt (LM) algorithm. However, the tracking accuracy and computation time of the LM algorithm depends on the initial values of pose parameters. The artificial neural network (ANN) based methods can provide an alternative solution for optimization algorithms, whereas the studies based on machine learning algorithms had limited tracking performance. In this study, we proposed a ResNet-LM algorithm, based on the fusion of the deep learning algorithm and optimization algorithm, to improve PMT performance. Firstly, we employ a residual neural network (ResNet-20) to track a single magnet. The tracking accuracy of ResNet is (1.69±1.05 mm, 1.25±0.68°) by padding with a scale of 2, where the size of the magnetic flux density (XT) becomes (3, 8, 8). Secondly, the prediction result of ResNet is adopted as the initial value for the LM algorithm, with the improved tracking accuracy of (1.25±0.90 mm, 2.80±1.94°). Finally, we utilize an adaptive weighted fusion algorithm to fuse the prediction results of ResNet and LM algorithms. Experimental results show that the pose tracking accuracy of ResNet-LM is improved to (0.90±0.75 mm, 1.51±0.87°), where the mean computer time for the ResNet-LM algorithm was 79.3 ms. The ResNet-LM-based pose accuracy for AGV Parking was (6.09±1.18 mm, 2.34±1.23°). The proposed approach can improve the tracking accuracy and reduce the computational time of PMT, thereby extending the application scenarios of PMT." @default.
- W4313017837 created "2023-01-05" @default.
- W4313017837 creator A5010002501 @default.
- W4313017837 creator A5034136484 @default.
- W4313017837 creator A5044583128 @default.
- W4313017837 creator A5045086221 @default.
- W4313017837 creator A5051658650 @default.
- W4313017837 date "2022-01-01" @default.
- W4313017837 modified "2023-10-16" @default.
- W4313017837 title "An Improved Magnetic Tracking Approach Based on ResNet-LM Fusion Algorithm" @default.
- W4313017837 cites W1932847118 @default.
- W4313017837 cites W1988283664 @default.
- W4313017837 cites W2104492856 @default.
- W4313017837 cites W2135850590 @default.
- W4313017837 cites W2137983211 @default.
- W4313017837 cites W2154929945 @default.
- W4313017837 cites W2156595892 @default.
- W4313017837 cites W2161425799 @default.
- W4313017837 cites W2171193747 @default.
- W4313017837 cites W2194775991 @default.
- W4313017837 cites W2343342556 @default.
- W4313017837 cites W2433211702 @default.
- W4313017837 cites W2530375805 @default.
- W4313017837 cites W2622341759 @default.
- W4313017837 cites W2789537641 @default.
- W4313017837 cites W2807292815 @default.
- W4313017837 cites W2912290085 @default.
- W4313017837 cites W2944842280 @default.
- W4313017837 cites W3003952261 @default.
- W4313017837 cites W3016352339 @default.
- W4313017837 cites W3022771862 @default.
- W4313017837 cites W3033813598 @default.
- W4313017837 cites W3044182567 @default.
- W4313017837 cites W3107637745 @default.
- W4313017837 cites W3140671435 @default.
- W4313017837 cites W3145377020 @default.
- W4313017837 cites W3192572915 @default.
- W4313017837 cites W3201205692 @default.
- W4313017837 cites W4200149344 @default.
- W4313017837 doi "https://doi.org/10.1109/tim.2022.3216597" @default.
- W4313017837 hasPublicationYear "2022" @default.
- W4313017837 type Work @default.
- W4313017837 citedByCount "0" @default.
- W4313017837 crossrefType "journal-article" @default.
- W4313017837 hasAuthorship W4313017837A5010002501 @default.
- W4313017837 hasAuthorship W4313017837A5034136484 @default.
- W4313017837 hasAuthorship W4313017837A5044583128 @default.
- W4313017837 hasAuthorship W4313017837A5045086221 @default.
- W4313017837 hasAuthorship W4313017837A5051658650 @default.
- W4313017837 hasConcept C11413529 @default.
- W4313017837 hasConcept C154945302 @default.
- W4313017837 hasConcept C155512373 @default.
- W4313017837 hasConcept C15744967 @default.
- W4313017837 hasConcept C19417346 @default.
- W4313017837 hasConcept C2775936607 @default.
- W4313017837 hasConcept C2944601119 @default.
- W4313017837 hasConcept C41008148 @default.
- W4313017837 hasConcept C45374587 @default.
- W4313017837 hasConceptScore W4313017837C11413529 @default.
- W4313017837 hasConceptScore W4313017837C154945302 @default.
- W4313017837 hasConceptScore W4313017837C155512373 @default.
- W4313017837 hasConceptScore W4313017837C15744967 @default.
- W4313017837 hasConceptScore W4313017837C19417346 @default.
- W4313017837 hasConceptScore W4313017837C2775936607 @default.
- W4313017837 hasConceptScore W4313017837C2944601119 @default.
- W4313017837 hasConceptScore W4313017837C41008148 @default.
- W4313017837 hasConceptScore W4313017837C45374587 @default.
- W4313017837 hasFunder F4320321001 @default.
- W4313017837 hasFunder F4320321133 @default.
- W4313017837 hasLocation W43130178371 @default.
- W4313017837 hasOpenAccess W4313017837 @default.
- W4313017837 hasPrimaryLocation W43130178371 @default.
- W4313017837 hasRelatedWork W2129645087 @default.
- W4313017837 hasRelatedWork W2354062721 @default.
- W4313017837 hasRelatedWork W2755231872 @default.
- W4313017837 hasRelatedWork W2945831103 @default.
- W4313017837 hasRelatedWork W2973451922 @default.
- W4313017837 hasRelatedWork W2984708981 @default.
- W4313017837 hasRelatedWork W3023803297 @default.
- W4313017837 hasRelatedWork W3094412894 @default.
- W4313017837 hasRelatedWork W3196952692 @default.
- W4313017837 hasRelatedWork W4300939921 @default.
- W4313017837 hasVolume "71" @default.
- W4313017837 isParatext "false" @default.
- W4313017837 isRetracted "false" @default.
- W4313017837 workType "article" @default.