Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313022015> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4313022015 abstract "Oak decline is a complex syndrome that increasingly affects the survival of oak species worldwide. Spectral-based physiological plant traits (PTs) indicators have successfully quantified pigment degradation and vegetation structure. The specific response of PTs to decline diseases has been answered by using high spectral- and spatial-resolution hyperspectral and thermal sensors onboard airborne platforms in the context of oak disease detection and monitoring. However, the capacity for early detection using a limited number of spectral bands, with miniaturised sensors of lower sensitivity, is unknown, seeking outstanding operability through cost-effective platforms, which is critical to detect irreversible damage timely. We evaluate the use of multispectral and thermal imagery onboard a drone together with a 3-D radiative transfer model (RTM) approach to assess a predictive symbolic classification model of Phytophthora-infected holm and cork oak areas located in Ourique (southern Portugal). The field survey comprised more than 390 trees across disease severity classes with varying disease-incidence levels and species. The classification model showed up to 83% overall accuracy ( <tex xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>$k=0.46$</tex> ) for decline detection. The proposed model allowed us to efficiently identify the physiological state of the forest canopy so that disease progression can be detected and mapped rapidly, which is essential for fighting oak decline when silvicultural practices, such as tree removal and clearing, can still prevent the spread of dieback processes. Therefore, our study demonstrates that the tandem use of multispectral and thermal sensors, together with an RTM and AI approach, helps us predict the impact of this particularly damaging disease on oak trees." @default.
- W4313022015 created "2023-01-05" @default.
- W4313022015 creator A5012499175 @default.
- W4313022015 creator A5031417674 @default.
- W4313022015 creator A5033102364 @default.
- W4313022015 creator A5075724310 @default.
- W4313022015 date "2022-07-17" @default.
- W4313022015 modified "2023-10-16" @default.
- W4313022015 title "Monitoring Phytophthora Disease Symptoms Through Very-High-Resolution Multispectral and Thermal Drone Imagery" @default.
- W4313022015 cites W2008283621 @default.
- W4313022015 cites W2053859910 @default.
- W4313022015 cites W2125257725 @default.
- W4313022015 cites W2156665896 @default.
- W4313022015 cites W2337926544 @default.
- W4313022015 cites W2596051487 @default.
- W4313022015 cites W2598430045 @default.
- W4313022015 cites W2809262461 @default.
- W4313022015 cites W2911964244 @default.
- W4313022015 cites W2969485242 @default.
- W4313022015 cites W3096854133 @default.
- W4313022015 cites W3110574776 @default.
- W4313022015 cites W3176879029 @default.
- W4313022015 cites W3205932994 @default.
- W4313022015 cites W4213251304 @default.
- W4313022015 cites W4214564766 @default.
- W4313022015 doi "https://doi.org/10.1109/igarss46834.2022.9884701" @default.
- W4313022015 hasPublicationYear "2022" @default.
- W4313022015 type Work @default.
- W4313022015 citedByCount "0" @default.
- W4313022015 crossrefType "proceedings-article" @default.
- W4313022015 hasAuthorship W4313022015A5012499175 @default.
- W4313022015 hasAuthorship W4313022015A5031417674 @default.
- W4313022015 hasAuthorship W4313022015A5033102364 @default.
- W4313022015 hasAuthorship W4313022015A5075724310 @default.
- W4313022015 hasConcept C101000010 @default.
- W4313022015 hasConcept C142724271 @default.
- W4313022015 hasConcept C159078339 @default.
- W4313022015 hasConcept C173163844 @default.
- W4313022015 hasConcept C18903297 @default.
- W4313022015 hasConcept C205649164 @default.
- W4313022015 hasConcept C2776133958 @default.
- W4313022015 hasConcept C2778102629 @default.
- W4313022015 hasConcept C39432304 @default.
- W4313022015 hasConcept C41008148 @default.
- W4313022015 hasConcept C62649853 @default.
- W4313022015 hasConcept C71924100 @default.
- W4313022015 hasConcept C86803240 @default.
- W4313022015 hasConceptScore W4313022015C101000010 @default.
- W4313022015 hasConceptScore W4313022015C142724271 @default.
- W4313022015 hasConceptScore W4313022015C159078339 @default.
- W4313022015 hasConceptScore W4313022015C173163844 @default.
- W4313022015 hasConceptScore W4313022015C18903297 @default.
- W4313022015 hasConceptScore W4313022015C205649164 @default.
- W4313022015 hasConceptScore W4313022015C2776133958 @default.
- W4313022015 hasConceptScore W4313022015C2778102629 @default.
- W4313022015 hasConceptScore W4313022015C39432304 @default.
- W4313022015 hasConceptScore W4313022015C41008148 @default.
- W4313022015 hasConceptScore W4313022015C62649853 @default.
- W4313022015 hasConceptScore W4313022015C71924100 @default.
- W4313022015 hasConceptScore W4313022015C86803240 @default.
- W4313022015 hasLocation W43130220151 @default.
- W4313022015 hasOpenAccess W4313022015 @default.
- W4313022015 hasPrimaryLocation W43130220151 @default.
- W4313022015 hasRelatedWork W2018581755 @default.
- W4313022015 hasRelatedWork W2018844502 @default.
- W4313022015 hasRelatedWork W2019714000 @default.
- W4313022015 hasRelatedWork W2037236246 @default.
- W4313022015 hasRelatedWork W2065968650 @default.
- W4313022015 hasRelatedWork W2252928335 @default.
- W4313022015 hasRelatedWork W2766179944 @default.
- W4313022015 hasRelatedWork W2954768068 @default.
- W4313022015 hasRelatedWork W1991437568 @default.
- W4313022015 hasRelatedWork W2169663233 @default.
- W4313022015 isParatext "false" @default.
- W4313022015 isRetracted "false" @default.
- W4313022015 workType "article" @default.