Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313064280> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4313064280 abstract "Answer-aware question generation aims to generate answerable questions from a given paragraph and answer. Most of the current models concatenated entity information into word embeddings to improve the model's learning ability for special entities, but this method is inefficient for utilizing these information and has accumulated errors. In addition, the majority of research focuses on English, with less exploration in languages such as Chinese. Combining the differences between languages, we propose three methods for incorporating entity information in paragraphs and answers into the training corpus. The corpus processed by these methods can enable the model to have the ability to learn entities autonomously. The experimental results show that our methods can improve most mainstream models and enhance the learning ability of the model for special entities." @default.
- W4313064280 created "2023-01-06" @default.
- W4313064280 creator A5031416026 @default.
- W4313064280 creator A5045336301 @default.
- W4313064280 creator A5045957571 @default.
- W4313064280 creator A5083886481 @default.
- W4313064280 date "2022-07-18" @default.
- W4313064280 modified "2023-09-22" @default.
- W4313064280 title "A simple but practical method: How to improve the usage of entities in the Chinese question generation" @default.
- W4313064280 cites W2133459682 @default.
- W4313064280 cites W2137006453 @default.
- W4313064280 cites W2606333299 @default.
- W4313064280 cites W2803595284 @default.
- W4313064280 cites W2804292122 @default.
- W4313064280 cites W2886402885 @default.
- W4313064280 cites W2887938737 @default.
- W4313064280 cites W2891946694 @default.
- W4313064280 cites W2911857455 @default.
- W4313064280 cites W2962717047 @default.
- W4313064280 cites W2963627339 @default.
- W4313064280 cites W2963957489 @default.
- W4313064280 cites W2964278185 @default.
- W4313064280 cites W2991363980 @default.
- W4313064280 cites W2997601848 @default.
- W4313064280 cites W2998653236 @default.
- W4313064280 cites W3034383728 @default.
- W4313064280 cites W3154940773 @default.
- W4313064280 cites W3167136668 @default.
- W4313064280 cites W3175147174 @default.
- W4313064280 cites W3176011152 @default.
- W4313064280 cites W3193152395 @default.
- W4313064280 doi "https://doi.org/10.1109/ijcnn55064.2022.9891960" @default.
- W4313064280 hasPublicationYear "2022" @default.
- W4313064280 type Work @default.
- W4313064280 citedByCount "0" @default.
- W4313064280 crossrefType "proceedings-article" @default.
- W4313064280 hasAuthorship W4313064280A5031416026 @default.
- W4313064280 hasAuthorship W4313064280A5045336301 @default.
- W4313064280 hasAuthorship W4313064280A5045957571 @default.
- W4313064280 hasAuthorship W4313064280A5083886481 @default.
- W4313064280 hasConcept C111472728 @default.
- W4313064280 hasConcept C136764020 @default.
- W4313064280 hasConcept C138885662 @default.
- W4313064280 hasConcept C154945302 @default.
- W4313064280 hasConcept C204321447 @default.
- W4313064280 hasConcept C27206212 @default.
- W4313064280 hasConcept C2777206241 @default.
- W4313064280 hasConcept C2777617010 @default.
- W4313064280 hasConcept C2780586882 @default.
- W4313064280 hasConcept C41008148 @default.
- W4313064280 hasConcept C41895202 @default.
- W4313064280 hasConcept C90805587 @default.
- W4313064280 hasConceptScore W4313064280C111472728 @default.
- W4313064280 hasConceptScore W4313064280C136764020 @default.
- W4313064280 hasConceptScore W4313064280C138885662 @default.
- W4313064280 hasConceptScore W4313064280C154945302 @default.
- W4313064280 hasConceptScore W4313064280C204321447 @default.
- W4313064280 hasConceptScore W4313064280C27206212 @default.
- W4313064280 hasConceptScore W4313064280C2777206241 @default.
- W4313064280 hasConceptScore W4313064280C2777617010 @default.
- W4313064280 hasConceptScore W4313064280C2780586882 @default.
- W4313064280 hasConceptScore W4313064280C41008148 @default.
- W4313064280 hasConceptScore W4313064280C41895202 @default.
- W4313064280 hasConceptScore W4313064280C90805587 @default.
- W4313064280 hasFunder F4320321885 @default.
- W4313064280 hasLocation W43130642801 @default.
- W4313064280 hasOpenAccess W4313064280 @default.
- W4313064280 hasPrimaryLocation W43130642801 @default.
- W4313064280 hasRelatedWork W2115483262 @default.
- W4313064280 hasRelatedWork W2230691193 @default.
- W4313064280 hasRelatedWork W2249191539 @default.
- W4313064280 hasRelatedWork W2353169232 @default.
- W4313064280 hasRelatedWork W2360025963 @default.
- W4313064280 hasRelatedWork W2387134327 @default.
- W4313064280 hasRelatedWork W2460720124 @default.
- W4313064280 hasRelatedWork W2903887887 @default.
- W4313064280 hasRelatedWork W3107474891 @default.
- W4313064280 hasRelatedWork W4312119705 @default.
- W4313064280 isParatext "false" @default.
- W4313064280 isRetracted "false" @default.
- W4313064280 workType "article" @default.