Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313065982> ?p ?o ?g. }
- W4313065982 endingPage "127364" @default.
- W4313065982 startingPage "127345" @default.
- W4313065982 abstract "Existing Data Stream Mining algorithms assume the availability of labelled and balanced data streams. However, in many real-world applications such as Robotics, Weather Monitoring, Fraud-Detection systems, Cyber Security, and Human Activity Recognition, a vast amount of high-speed data is generated by Internet of Things sensors and real-time data on the Internet are unlabelled. Furthermore, the prediction models need to learn in Non-Stationary Environments due to evolving concepts. Manual labelling of these data streams is not practical due to the need for domain expertise and the time-resource-prohibitive nature of the required effort. To deal with such scenarios, existing approaches are self-Learning or Cluster-Guided Classification (CGC) which predict the pseudo-labels, which further update the prediction models. Previous studies have yet to establish a clear and conclusive view as to when, and why one pseudo-labelling approach should be preferable to another and what causes an approach to fail. In this research, we propose a novel approach, “ <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Predictor for Streaming Data with Scarce Labels</i> ” (PSDSL), which is capable of intelligently switching between self-learning, CGC and micro-clustering strategies, based on the problem it is applied to, i.e., the different characteristics of the data streams. In PSDSL a novel approach called <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Envelope-Clustering</i> has been introduced to resolve the conflict during the cluster labelling which suggested a confidence measure approach to ensure the quality and correctness of labels assigned to the clusters. The auto parameter tuning mechanism of PSDSL eliminates the human dependency and determines the best value of number of centroids from initial labelled data. The predictive performance of the PSDSL is evaluated on non-stationary datasets, synthetic data-streams, and real-world datasets. The approach has shown promising results on randomised datasets as well as on synthetic data-streams, as compared with state-of-the-art approaches. This is the first large-scale study on an adaptive extreme verification approach that supports automatic parameter tuning and intelligent switching of pseudo-labelling strategy, thus reducing the dependency of machine learning on human input." @default.
- W4313065982 created "2023-01-06" @default.
- W4313065982 creator A5023834364 @default.
- W4313065982 creator A5085158698 @default.
- W4313065982 creator A5089791573 @default.
- W4313065982 date "2022-01-01" @default.
- W4313065982 modified "2023-10-14" @default.
- W4313065982 title "Adaptive Learning With Extreme Verification Latency in Non-Stationary Environments" @default.
- W4313065982 cites W1584026445 @default.
- W4313065982 cites W1660289459 @default.
- W4313065982 cites W181999525 @default.
- W4313065982 cites W182707955 @default.
- W4313065982 cites W1885048467 @default.
- W4313065982 cites W1949687736 @default.
- W4313065982 cites W1977005232 @default.
- W4313065982 cites W1984388357 @default.
- W4313065982 cites W202016214 @default.
- W4313065982 cites W2038705219 @default.
- W4313065982 cites W2042116582 @default.
- W4313065982 cites W2044574055 @default.
- W4313065982 cites W2045938006 @default.
- W4313065982 cites W2048442462 @default.
- W4313065982 cites W2051903196 @default.
- W4313065982 cites W2053154970 @default.
- W4313065982 cites W2054082100 @default.
- W4313065982 cites W2054638878 @default.
- W4313065982 cites W2066773665 @default.
- W4313065982 cites W2068714596 @default.
- W4313065982 cites W2083681515 @default.
- W4313065982 cites W2084901303 @default.
- W4313065982 cites W2088340225 @default.
- W4313065982 cites W2092335550 @default.
- W4313065982 cites W2093825590 @default.
- W4313065982 cites W2095953800 @default.
- W4313065982 cites W2096846143 @default.
- W4313065982 cites W2099419573 @default.
- W4313065982 cites W2103016999 @default.
- W4313065982 cites W2110222014 @default.
- W4313065982 cites W2112482089 @default.
- W4313065982 cites W2115677675 @default.
- W4313065982 cites W2123003172 @default.
- W4313065982 cites W2126775366 @default.
- W4313065982 cites W2128040964 @default.
- W4313065982 cites W2128462276 @default.
- W4313065982 cites W2140164381 @default.
- W4313065982 cites W2142827986 @default.
- W4313065982 cites W2167122806 @default.
- W4313065982 cites W2170936641 @default.
- W4313065982 cites W2170988853 @default.
- W4313065982 cites W2252617635 @default.
- W4313065982 cites W2290145898 @default.
- W4313065982 cites W2294737577 @default.
- W4313065982 cites W2522231769 @default.
- W4313065982 cites W2536080594 @default.
- W4313065982 cites W2582709620 @default.
- W4313065982 cites W2585528949 @default.
- W4313065982 cites W2592025130 @default.
- W4313065982 cites W2604457090 @default.
- W4313065982 cites W2764124083 @default.
- W4313065982 cites W2798255764 @default.
- W4313065982 cites W2886064183 @default.
- W4313065982 cites W2886346162 @default.
- W4313065982 cites W2921074169 @default.
- W4313065982 cites W2955232136 @default.
- W4313065982 cites W2969613015 @default.
- W4313065982 cites W2969822227 @default.
- W4313065982 cites W3104083384 @default.
- W4313065982 cites W4213009331 @default.
- W4313065982 cites W4245055982 @default.
- W4313065982 cites W74525415 @default.
- W4313065982 doi "https://doi.org/10.1109/access.2022.3225225" @default.
- W4313065982 hasPublicationYear "2022" @default.
- W4313065982 type Work @default.
- W4313065982 citedByCount "0" @default.
- W4313065982 crossrefType "journal-article" @default.
- W4313065982 hasAuthorship W4313065982A5023834364 @default.
- W4313065982 hasAuthorship W4313065982A5085158698 @default.
- W4313065982 hasAuthorship W4313065982A5089791573 @default.
- W4313065982 hasBestOaLocation W43130659821 @default.
- W4313065982 hasConcept C110875604 @default.
- W4313065982 hasConcept C119857082 @default.
- W4313065982 hasConcept C124101348 @default.
- W4313065982 hasConcept C136764020 @default.
- W4313065982 hasConcept C154945302 @default.
- W4313065982 hasConcept C41008148 @default.
- W4313065982 hasConcept C60777511 @default.
- W4313065982 hasConcept C73555534 @default.
- W4313065982 hasConcept C89198739 @default.
- W4313065982 hasConceptScore W4313065982C110875604 @default.
- W4313065982 hasConceptScore W4313065982C119857082 @default.
- W4313065982 hasConceptScore W4313065982C124101348 @default.
- W4313065982 hasConceptScore W4313065982C136764020 @default.
- W4313065982 hasConceptScore W4313065982C154945302 @default.
- W4313065982 hasConceptScore W4313065982C41008148 @default.
- W4313065982 hasConceptScore W4313065982C60777511 @default.
- W4313065982 hasConceptScore W4313065982C73555534 @default.
- W4313065982 hasConceptScore W4313065982C89198739 @default.
- W4313065982 hasLocation W43130659821 @default.