Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313117943> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4313117943 endingPage "340" @default.
- W4313117943 startingPage "323" @default.
- W4313117943 abstract "The most talked about disease of our era, cancer, has taken many lives, and most of them are due to late prognosis. Statistical data shows around 10 million people lose their lives per year due to cancer globally. With every passing year, the malignant cancer cells are evolving at a rapid pace. The cancer cells are mutating with time, and it's becoming much more dangerous than before. In the chapter, the authors propose a DCGAN-based neural net architecture that will generate synthetic blood cancer cell images from fed data. The images, which will be generated, don't exist but can be formed in the near future due to constant mutation of the virus. Afterwards, the synthetic image is passes through a CNN net architecture which will predict the output class of the synthetic image. The novelty in this chapter is that it will generate some cancer cell images that can be generated after mutation, and it will predict the class of the image, whether it's malignant or benign through the proposed CNN architecture." @default.
- W4313117943 created "2023-01-06" @default.
- W4313117943 creator A5008961205 @default.
- W4313117943 creator A5022612787 @default.
- W4313117943 date "2022-09-09" @default.
- W4313117943 modified "2023-09-30" @default.
- W4313117943 title "A Fusion-Based Approach to Generate and Classify Synthetic Cancer Cell Image Using DCGAN and CNN Architecture" @default.
- W4313117943 cites W168227540 @default.
- W4313117943 cites W1983419531 @default.
- W4313117943 cites W2125188127 @default.
- W4313117943 cites W2294309140 @default.
- W4313117943 cites W2398921440 @default.
- W4313117943 cites W2582740551 @default.
- W4313117943 cites W2605048423 @default.
- W4313117943 cites W2806118840 @default.
- W4313117943 cites W2807567209 @default.
- W4313117943 cites W2907719205 @default.
- W4313117943 cites W2936339935 @default.
- W4313117943 cites W2962816100 @default.
- W4313117943 cites W2979830539 @default.
- W4313117943 doi "https://doi.org/10.4018/978-1-6684-7544-7.ch017" @default.
- W4313117943 hasPublicationYear "2022" @default.
- W4313117943 type Work @default.
- W4313117943 citedByCount "0" @default.
- W4313117943 crossrefType "book-chapter" @default.
- W4313117943 hasAuthorship W4313117943A5008961205 @default.
- W4313117943 hasAuthorship W4313117943A5022612787 @default.
- W4313117943 hasConcept C115961682 @default.
- W4313117943 hasConcept C121608353 @default.
- W4313117943 hasConcept C123657996 @default.
- W4313117943 hasConcept C126322002 @default.
- W4313117943 hasConcept C13280743 @default.
- W4313117943 hasConcept C153180895 @default.
- W4313117943 hasConcept C154945302 @default.
- W4313117943 hasConcept C15744967 @default.
- W4313117943 hasConcept C160920958 @default.
- W4313117943 hasConcept C166957645 @default.
- W4313117943 hasConcept C205649164 @default.
- W4313117943 hasConcept C2777212361 @default.
- W4313117943 hasConcept C2777526511 @default.
- W4313117943 hasConcept C2778738651 @default.
- W4313117943 hasConcept C31972630 @default.
- W4313117943 hasConcept C41008148 @default.
- W4313117943 hasConcept C71924100 @default.
- W4313117943 hasConcept C77805123 @default.
- W4313117943 hasConceptScore W4313117943C115961682 @default.
- W4313117943 hasConceptScore W4313117943C121608353 @default.
- W4313117943 hasConceptScore W4313117943C123657996 @default.
- W4313117943 hasConceptScore W4313117943C126322002 @default.
- W4313117943 hasConceptScore W4313117943C13280743 @default.
- W4313117943 hasConceptScore W4313117943C153180895 @default.
- W4313117943 hasConceptScore W4313117943C154945302 @default.
- W4313117943 hasConceptScore W4313117943C15744967 @default.
- W4313117943 hasConceptScore W4313117943C160920958 @default.
- W4313117943 hasConceptScore W4313117943C166957645 @default.
- W4313117943 hasConceptScore W4313117943C205649164 @default.
- W4313117943 hasConceptScore W4313117943C2777212361 @default.
- W4313117943 hasConceptScore W4313117943C2777526511 @default.
- W4313117943 hasConceptScore W4313117943C2778738651 @default.
- W4313117943 hasConceptScore W4313117943C31972630 @default.
- W4313117943 hasConceptScore W4313117943C41008148 @default.
- W4313117943 hasConceptScore W4313117943C71924100 @default.
- W4313117943 hasConceptScore W4313117943C77805123 @default.
- W4313117943 hasLocation W43131179431 @default.
- W4313117943 hasOpenAccess W4313117943 @default.
- W4313117943 hasPrimaryLocation W43131179431 @default.
- W4313117943 hasRelatedWork W2005185696 @default.
- W4313117943 hasRelatedWork W2073988075 @default.
- W4313117943 hasRelatedWork W2092957489 @default.
- W4313117943 hasRelatedWork W2130228941 @default.
- W4313117943 hasRelatedWork W2132132164 @default.
- W4313117943 hasRelatedWork W2161229648 @default.
- W4313117943 hasRelatedWork W2235753890 @default.
- W4313117943 hasRelatedWork W2314419244 @default.
- W4313117943 hasRelatedWork W2366116130 @default.
- W4313117943 hasRelatedWork W2993674027 @default.
- W4313117943 isParatext "false" @default.
- W4313117943 isRetracted "false" @default.
- W4313117943 workType "book-chapter" @default.