Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313119145> ?p ?o ?g. }
- W4313119145 endingPage "106672" @default.
- W4313119145 startingPage "106655" @default.
- W4313119145 abstract "Machine learning is now widely used in various fields, and it has made a big splash in the field of disease diagnosis. But traditional machine learning models are general-purpose, that is, one model is used to evaluate the health status of different patients. A general-purpose machine learning algorithm depends on a large amount of data and requires abundant computing power support, relies on the average level to describe the model performance, and cannot achieve optimal results on a specific problem. In this paper, we propose to train a unique model for each patient to improve the accuracy and ease of use of the model. The proposed approach to solving a problem in the paper is from three perspectives (1) targeted data processing, (2) model structure design: Passing in patient-related information into the model, and (3) hyperparameter tailored optimization. The preliminary experimental results show that using the custom model has advantages of high accuracy, high confidence, and low resource required to diagnose a patient. In the Hepatitis C dataset, over 99% accuracy and 94% recall were achieved using a smaller dataset (only 615 individuals’ data) without knowledge of the relevant field. Traditional algorithms such as XGBoost or multi-algorithm ensemble could achieve less than 95% accuracy and only less than 70% recall. Out of a total of 56 patients, the custom model was able to identify 53 patients 20 more than traditional methods, bringing a new and efficient tool for future hepatitis C prevention and treatment efforts." @default.
- W4313119145 created "2023-01-06" @default.
- W4313119145 creator A5037165163 @default.
- W4313119145 creator A5042674460 @default.
- W4313119145 creator A5048622696 @default.
- W4313119145 date "2022-01-01" @default.
- W4313119145 modified "2023-09-30" @default.
- W4313119145 title "Machine Learning Model for Hepatitis C Diagnosis Customized to Each Patient" @default.
- W4313119145 cites W1498436455 @default.
- W4313119145 cites W1866987985 @default.
- W4313119145 cites W1964494592 @default.
- W4313119145 cites W1978567215 @default.
- W4313119145 cites W1987450796 @default.
- W4313119145 cites W1991378085 @default.
- W4313119145 cites W1996118086 @default.
- W4313119145 cites W2006099253 @default.
- W4313119145 cites W2016043834 @default.
- W4313119145 cites W2018093805 @default.
- W4313119145 cites W2025183033 @default.
- W4313119145 cites W2027666102 @default.
- W4313119145 cites W2042063433 @default.
- W4313119145 cites W2043976325 @default.
- W4313119145 cites W2047208492 @default.
- W4313119145 cites W2070264454 @default.
- W4313119145 cites W2071251600 @default.
- W4313119145 cites W2077458446 @default.
- W4313119145 cites W2089140201 @default.
- W4313119145 cites W2090847193 @default.
- W4313119145 cites W2091085232 @default.
- W4313119145 cites W2097246425 @default.
- W4313119145 cites W2108598243 @default.
- W4313119145 cites W2109370026 @default.
- W4313119145 cites W2110957526 @default.
- W4313119145 cites W2113864802 @default.
- W4313119145 cites W2114834707 @default.
- W4313119145 cites W2122156007 @default.
- W4313119145 cites W2139252405 @default.
- W4313119145 cites W2145949183 @default.
- W4313119145 cites W2148143831 @default.
- W4313119145 cites W2152977846 @default.
- W4313119145 cites W2154338458 @default.
- W4313119145 cites W2163828439 @default.
- W4313119145 cites W2171980820 @default.
- W4313119145 cites W2193121729 @default.
- W4313119145 cites W2220384803 @default.
- W4313119145 cites W2257408573 @default.
- W4313119145 cites W2328991939 @default.
- W4313119145 cites W2333452860 @default.
- W4313119145 cites W2395579298 @default.
- W4313119145 cites W2588275679 @default.
- W4313119145 cites W2604512916 @default.
- W4313119145 cites W2606665849 @default.
- W4313119145 cites W2739879705 @default.
- W4313119145 cites W2765847185 @default.
- W4313119145 cites W2780186126 @default.
- W4313119145 cites W2809598685 @default.
- W4313119145 cites W2810577347 @default.
- W4313119145 cites W2884443195 @default.
- W4313119145 cites W2887280559 @default.
- W4313119145 cites W2898280479 @default.
- W4313119145 cites W2908201961 @default.
- W4313119145 cites W2908735595 @default.
- W4313119145 cites W2916204728 @default.
- W4313119145 cites W2918341242 @default.
- W4313119145 cites W2920302751 @default.
- W4313119145 cites W2940010972 @default.
- W4313119145 cites W2949676527 @default.
- W4313119145 cites W2953018250 @default.
- W4313119145 cites W2954996726 @default.
- W4313119145 cites W2963108767 @default.
- W4313119145 cites W2963459241 @default.
- W4313119145 cites W2970466632 @default.
- W4313119145 cites W2997655715 @default.
- W4313119145 cites W3004127093 @default.
- W4313119145 cites W3007587150 @default.
- W4313119145 cites W3014011525 @default.
- W4313119145 cites W3016108562 @default.
- W4313119145 cites W3032467329 @default.
- W4313119145 cites W3034368386 @default.
- W4313119145 cites W3081199126 @default.
- W4313119145 cites W3092076954 @default.
- W4313119145 cites W3102476541 @default.
- W4313119145 cites W3109971304 @default.
- W4313119145 cites W3115592149 @default.
- W4313119145 cites W3126154634 @default.
- W4313119145 cites W3150635270 @default.
- W4313119145 cites W3160144254 @default.
- W4313119145 cites W3174086521 @default.
- W4313119145 cites W3182706339 @default.
- W4313119145 cites W3216660278 @default.
- W4313119145 cites W4226239514 @default.
- W4313119145 cites W4233842984 @default.
- W4313119145 cites W4238815767 @default.
- W4313119145 cites W4254751698 @default.
- W4313119145 cites W4255421341 @default.
- W4313119145 cites W4285741730 @default.
- W4313119145 cites W4293370590 @default.
- W4313119145 doi "https://doi.org/10.1109/access.2022.3210347" @default.