Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313125087> ?p ?o ?g. }
- W4313125087 endingPage "4088" @default.
- W4313125087 startingPage "4075" @default.
- W4313125087 abstract "Bus system is a critical component of sustainable urban transportation. However, the operation of a bus fleet is unstable in nature, and bus bunching has become a common phenomenon that undermines the efficiency and reliability of bus systems. Recently research has demonstrated the promising application of multi-agent reinforcement learning (MARL) to achieve efficient vehicle holding control to avoid bus bunching. However, existing studies essentially overlook the robustness issue resulting from various events, perturbations and anomalies in a transit system, which is of utmost importance when transferring the models for real-world deployment/application. In this study, we integrate implicit quantile network and meta-learning to develop a distributional MARL framework -- IQNC-M -- to learn continuous control. The proposed IQNC-M framework achieves efficient and reliable control decisions through better handling various uncertainties/events in real-time transit operations. Specifically, we introduce an interpretable meta-learning module to incorporate global information into the distributional MARL framework, which is an effective solution to circumvent the credit assignment issue in the transit system. In addition, we design a specific learning procedure to train each agent within the framework to pursue a robust control policy. We develop simulation environments based on real-world bus services and passenger demand data and evaluate the proposed framework against both traditional holding control models and state-of-the-art MARL models. Our results show that the proposed IQNC-M framework can effectively handle the various extreme events, such as traffic state perturbations, service interruptions, and demand surges, thus improving both efficiency and reliability of the system." @default.
- W4313125087 created "2023-01-06" @default.
- W4313125087 creator A5044763915 @default.
- W4313125087 creator A5058941074 @default.
- W4313125087 date "2023-04-01" @default.
- W4313125087 modified "2023-09-27" @default.
- W4313125087 title "Robust Dynamic Bus Control: a Distributional Multi-Agent Reinforcement Learning Approach" @default.
- W4313125087 cites W1542941925 @default.
- W4313125087 cites W1995333595 @default.
- W4313125087 cites W2025963639 @default.
- W4313125087 cites W2034628819 @default.
- W4313125087 cites W2046033161 @default.
- W4313125087 cites W2053984877 @default.
- W4313125087 cites W2062905113 @default.
- W4313125087 cites W2073040622 @default.
- W4313125087 cites W2076337359 @default.
- W4313125087 cites W2090672779 @default.
- W4313125087 cites W2092463994 @default.
- W4313125087 cites W2099488522 @default.
- W4313125087 cites W2145339207 @default.
- W4313125087 cites W2498017881 @default.
- W4313125087 cites W2564320642 @default.
- W4313125087 cites W2583813242 @default.
- W4313125087 cites W2735824523 @default.
- W4313125087 cites W2747500309 @default.
- W4313125087 cites W2766447205 @default.
- W4313125087 cites W2800510013 @default.
- W4313125087 cites W2904681300 @default.
- W4313125087 cites W2915117209 @default.
- W4313125087 cites W2930758229 @default.
- W4313125087 cites W2944175988 @default.
- W4313125087 cites W2967292964 @default.
- W4313125087 cites W3027102885 @default.
- W4313125087 cites W3096227293 @default.
- W4313125087 cites W3159284201 @default.
- W4313125087 cites W598095728 @default.
- W4313125087 doi "https://doi.org/10.1109/tits.2022.3229527" @default.
- W4313125087 hasPublicationYear "2023" @default.
- W4313125087 type Work @default.
- W4313125087 citedByCount "0" @default.
- W4313125087 crossrefType "journal-article" @default.
- W4313125087 hasAuthorship W4313125087A5044763915 @default.
- W4313125087 hasAuthorship W4313125087A5058941074 @default.
- W4313125087 hasBestOaLocation W43131250872 @default.
- W4313125087 hasConcept C104317684 @default.
- W4313125087 hasConcept C105339364 @default.
- W4313125087 hasConcept C111919701 @default.
- W4313125087 hasConcept C119857082 @default.
- W4313125087 hasConcept C120314980 @default.
- W4313125087 hasConcept C121332964 @default.
- W4313125087 hasConcept C127413603 @default.
- W4313125087 hasConcept C133731056 @default.
- W4313125087 hasConcept C154945302 @default.
- W4313125087 hasConcept C163258240 @default.
- W4313125087 hasConcept C185592680 @default.
- W4313125087 hasConcept C22212356 @default.
- W4313125087 hasConcept C2775924081 @default.
- W4313125087 hasConcept C2779697334 @default.
- W4313125087 hasConcept C41008148 @default.
- W4313125087 hasConcept C43214815 @default.
- W4313125087 hasConcept C539828613 @default.
- W4313125087 hasConcept C55493867 @default.
- W4313125087 hasConcept C62520636 @default.
- W4313125087 hasConcept C63479239 @default.
- W4313125087 hasConcept C97541855 @default.
- W4313125087 hasConceptScore W4313125087C104317684 @default.
- W4313125087 hasConceptScore W4313125087C105339364 @default.
- W4313125087 hasConceptScore W4313125087C111919701 @default.
- W4313125087 hasConceptScore W4313125087C119857082 @default.
- W4313125087 hasConceptScore W4313125087C120314980 @default.
- W4313125087 hasConceptScore W4313125087C121332964 @default.
- W4313125087 hasConceptScore W4313125087C127413603 @default.
- W4313125087 hasConceptScore W4313125087C133731056 @default.
- W4313125087 hasConceptScore W4313125087C154945302 @default.
- W4313125087 hasConceptScore W4313125087C163258240 @default.
- W4313125087 hasConceptScore W4313125087C185592680 @default.
- W4313125087 hasConceptScore W4313125087C22212356 @default.
- W4313125087 hasConceptScore W4313125087C2775924081 @default.
- W4313125087 hasConceptScore W4313125087C2779697334 @default.
- W4313125087 hasConceptScore W4313125087C41008148 @default.
- W4313125087 hasConceptScore W4313125087C43214815 @default.
- W4313125087 hasConceptScore W4313125087C539828613 @default.
- W4313125087 hasConceptScore W4313125087C55493867 @default.
- W4313125087 hasConceptScore W4313125087C62520636 @default.
- W4313125087 hasConceptScore W4313125087C63479239 @default.
- W4313125087 hasConceptScore W4313125087C97541855 @default.
- W4313125087 hasFunder F4320319952 @default.
- W4313125087 hasFunder F4320321001 @default.
- W4313125087 hasIssue "4" @default.
- W4313125087 hasLocation W43131250871 @default.
- W4313125087 hasLocation W43131250872 @default.
- W4313125087 hasLocation W43131250873 @default.
- W4313125087 hasOpenAccess W4313125087 @default.
- W4313125087 hasPrimaryLocation W43131250871 @default.
- W4313125087 hasRelatedWork W2043037536 @default.
- W4313125087 hasRelatedWork W2377880878 @default.
- W4313125087 hasRelatedWork W2609159405 @default.
- W4313125087 hasRelatedWork W2769960252 @default.