Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313127181> ?p ?o ?g. }
- W4313127181 endingPage "511" @default.
- W4313127181 startingPage "497" @default.
- W4313127181 abstract "Trade-offs between accuracy and runtime are a common phenomenon in the field of computer science, but particularly pose a challenge for online Brain-computer interface (BCI) applications, such as control interfaces for paralysis patients. However, research evaluating the testing runtime of various classifiers is extremely limited. In this study, we assess trade-offs between accuracy and runtime (total and testing) of the classifiers benchmarked in Kastrati et al.’s introduction of EEGEyeNet, as well as sLDA, logistic regression, variants of SVM, and a shallow CNN. For simple BCI tasks requiring binary classification, we find that both simple and ensemble ML algorithms, especially tree-based models, can achieve accuracies comparable to DL networks’ while achieving remarkably faster total and testing runtimes. Namely, DecisionTree, RandomForest, and GradientBoost were particularly impressive, and we consider these highly efficient classifiers to be promising machine learning alternatives to slower deep learning classifiers such as CNN in binary motor imagery classification." @default.
- W4313127181 created "2023-01-06" @default.
- W4313127181 creator A5027146239 @default.
- W4313127181 creator A5065015014 @default.
- W4313127181 date "2022-01-01" @default.
- W4313127181 modified "2023-10-16" @default.
- W4313127181 title "ML vs DL: Accuracy and Testing Runtime Trade-offs in BCI" @default.
- W4313127181 cites W1610928686 @default.
- W4313127181 cites W1678356000 @default.
- W4313127181 cites W1930624869 @default.
- W4313127181 cites W1967320885 @default.
- W4313127181 cites W1968969471 @default.
- W4313127181 cites W2002352636 @default.
- W4313127181 cites W2062125287 @default.
- W4313127181 cites W2112796928 @default.
- W4313127181 cites W2342408547 @default.
- W4313127181 cites W2528257759 @default.
- W4313127181 cites W2790180355 @default.
- W4313127181 cites W2794345050 @default.
- W4313127181 cites W2890869158 @default.
- W4313127181 cites W2891377727 @default.
- W4313127181 cites W2900993889 @default.
- W4313127181 cites W2903950532 @default.
- W4313127181 cites W2915893085 @default.
- W4313127181 cites W2919163648 @default.
- W4313127181 cites W2921902175 @default.
- W4313127181 cites W2951758041 @default.
- W4313127181 cites W2963355311 @default.
- W4313127181 cites W2964596665 @default.
- W4313127181 cites W3004161400 @default.
- W4313127181 cites W3035442710 @default.
- W4313127181 cites W3088555883 @default.
- W4313127181 cites W3090429950 @default.
- W4313127181 cites W3091129905 @default.
- W4313127181 cites W3093410479 @default.
- W4313127181 cites W3100271497 @default.
- W4313127181 cites W3102003537 @default.
- W4313127181 cites W3102476541 @default.
- W4313127181 cites W3115305254 @default.
- W4313127181 cites W3147588814 @default.
- W4313127181 cites W4236137412 @default.
- W4313127181 cites W4239510810 @default.
- W4313127181 doi "https://doi.org/10.1007/978-3-031-17618-0_35" @default.
- W4313127181 hasPublicationYear "2022" @default.
- W4313127181 type Work @default.
- W4313127181 citedByCount "0" @default.
- W4313127181 crossrefType "book-chapter" @default.
- W4313127181 hasAuthorship W4313127181A5027146239 @default.
- W4313127181 hasAuthorship W4313127181A5065015014 @default.
- W4313127181 hasConcept C111472728 @default.
- W4313127181 hasConcept C111919701 @default.
- W4313127181 hasConcept C113843644 @default.
- W4313127181 hasConcept C118552586 @default.
- W4313127181 hasConcept C119857082 @default.
- W4313127181 hasConcept C12267149 @default.
- W4313127181 hasConcept C129307140 @default.
- W4313127181 hasConcept C138885662 @default.
- W4313127181 hasConcept C151956035 @default.
- W4313127181 hasConcept C153180895 @default.
- W4313127181 hasConcept C154945302 @default.
- W4313127181 hasConcept C15744967 @default.
- W4313127181 hasConcept C157915830 @default.
- W4313127181 hasConcept C173201364 @default.
- W4313127181 hasConcept C202444582 @default.
- W4313127181 hasConcept C2780586882 @default.
- W4313127181 hasConcept C33923547 @default.
- W4313127181 hasConcept C41008148 @default.
- W4313127181 hasConcept C48372109 @default.
- W4313127181 hasConcept C522805319 @default.
- W4313127181 hasConcept C66905080 @default.
- W4313127181 hasConcept C94375191 @default.
- W4313127181 hasConcept C9652623 @default.
- W4313127181 hasConceptScore W4313127181C111472728 @default.
- W4313127181 hasConceptScore W4313127181C111919701 @default.
- W4313127181 hasConceptScore W4313127181C113843644 @default.
- W4313127181 hasConceptScore W4313127181C118552586 @default.
- W4313127181 hasConceptScore W4313127181C119857082 @default.
- W4313127181 hasConceptScore W4313127181C12267149 @default.
- W4313127181 hasConceptScore W4313127181C129307140 @default.
- W4313127181 hasConceptScore W4313127181C138885662 @default.
- W4313127181 hasConceptScore W4313127181C151956035 @default.
- W4313127181 hasConceptScore W4313127181C153180895 @default.
- W4313127181 hasConceptScore W4313127181C154945302 @default.
- W4313127181 hasConceptScore W4313127181C15744967 @default.
- W4313127181 hasConceptScore W4313127181C157915830 @default.
- W4313127181 hasConceptScore W4313127181C173201364 @default.
- W4313127181 hasConceptScore W4313127181C202444582 @default.
- W4313127181 hasConceptScore W4313127181C2780586882 @default.
- W4313127181 hasConceptScore W4313127181C33923547 @default.
- W4313127181 hasConceptScore W4313127181C41008148 @default.
- W4313127181 hasConceptScore W4313127181C48372109 @default.
- W4313127181 hasConceptScore W4313127181C522805319 @default.
- W4313127181 hasConceptScore W4313127181C66905080 @default.
- W4313127181 hasConceptScore W4313127181C94375191 @default.
- W4313127181 hasConceptScore W4313127181C9652623 @default.
- W4313127181 hasLocation W43131271811 @default.
- W4313127181 hasOpenAccess W4313127181 @default.
- W4313127181 hasPrimaryLocation W43131271811 @default.