Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313131004> ?p ?o ?g. }
- W4313131004 endingPage "125" @default.
- W4313131004 startingPage "53" @default.
- W4313131004 abstract "Hyperbolic materials (HMs), whose components of the permittivity tensor have opposite signs, can excite hyperbolic phonon polaritons in a wide frequency range, paving a way to control light. However, most HMs studied previously are artificial structures constructed with periodically stacked subwavelength metallic and dielectric layers, whose hyperbolic properties are limited by the tangential wavevector component. In comparison, the lattice constants of natural HMs are sub-nanometer in size, there is no need to consider this limitation. In this chapter, we investigated the near-field radiative heat transfer (NFRHT) between 2D natural HMs, including hBN and α-MoO3, whose excellent 2D properties can be obtained by mechanical exfoliation. The near-field radiative heat flux is calculated using the fluctuation-dissipation theorem and the modified 4 × 4 transfer matrix method. Numerical results show that the NFRHT between 2D natural HMs can be significantly enhanced in the hyperbolic region. Moreover, we pointed out the regions in the wavevector space where volume-confined hyperbolic polaritons (VHPs) and surface-confined hyperbolic polaritons (SHPs) can exist and proved that VHPs and SHPs excited in natural HMs is the main reason for the large radiative heat flux. In particular, we discussed the essential role of natural HMs in enhancing NFRHT, considering the effects of optical axis orientation, film thickness, and material types. We believe this chapter will open a novel path for the research on NFRHT and are expected to be applied to next-generation high-efficiency energy conversion devices." @default.
- W4313131004 created "2023-01-06" @default.
- W4313131004 creator A5063458295 @default.
- W4313131004 date "2022-01-01" @default.
- W4313131004 modified "2023-09-25" @default.
- W4313131004 title "Using hyperbolic media for efficient near-field radiative heat transfer" @default.
- W4313131004 cites W1494457126 @default.
- W4313131004 cites W1972519069 @default.
- W4313131004 cites W1977515290 @default.
- W4313131004 cites W1986521458 @default.
- W4313131004 cites W1992136126 @default.
- W4313131004 cites W1992983613 @default.
- W4313131004 cites W1993661954 @default.
- W4313131004 cites W2004974549 @default.
- W4313131004 cites W2006105172 @default.
- W4313131004 cites W2006453347 @default.
- W4313131004 cites W2006530737 @default.
- W4313131004 cites W2008087271 @default.
- W4313131004 cites W2009171709 @default.
- W4313131004 cites W2012587360 @default.
- W4313131004 cites W2017241715 @default.
- W4313131004 cites W2018890340 @default.
- W4313131004 cites W2031570578 @default.
- W4313131004 cites W2040046649 @default.
- W4313131004 cites W2042273805 @default.
- W4313131004 cites W2047213875 @default.
- W4313131004 cites W2049904124 @default.
- W4313131004 cites W2054524782 @default.
- W4313131004 cites W2073745844 @default.
- W4313131004 cites W2086119998 @default.
- W4313131004 cites W2088993467 @default.
- W4313131004 cites W2092432703 @default.
- W4313131004 cites W2093596311 @default.
- W4313131004 cites W2096421416 @default.
- W4313131004 cites W2098285831 @default.
- W4313131004 cites W2110275088 @default.
- W4313131004 cites W2118756848 @default.
- W4313131004 cites W2126417783 @default.
- W4313131004 cites W2142321590 @default.
- W4313131004 cites W2143984225 @default.
- W4313131004 cites W2334814587 @default.
- W4313131004 cites W2343723715 @default.
- W4313131004 cites W2470817508 @default.
- W4313131004 cites W2530346154 @default.
- W4313131004 cites W2530918466 @default.
- W4313131004 cites W2557528190 @default.
- W4313131004 cites W2560058325 @default.
- W4313131004 cites W2626462421 @default.
- W4313131004 cites W2731248029 @default.
- W4313131004 cites W2788520989 @default.
- W4313131004 cites W2793040927 @default.
- W4313131004 cites W2803591935 @default.
- W4313131004 cites W2884691226 @default.
- W4313131004 cites W2892118382 @default.
- W4313131004 cites W2896394934 @default.
- W4313131004 cites W2903468391 @default.
- W4313131004 cites W2913993216 @default.
- W4313131004 cites W2941512972 @default.
- W4313131004 cites W2960144487 @default.
- W4313131004 cites W2963815086 @default.
- W4313131004 cites W2985564245 @default.
- W4313131004 cites W2991282069 @default.
- W4313131004 cites W3008344389 @default.
- W4313131004 cites W3008463357 @default.
- W4313131004 cites W3017636700 @default.
- W4313131004 cites W3037464148 @default.
- W4313131004 cites W3087811579 @default.
- W4313131004 cites W3088050245 @default.
- W4313131004 cites W3100954419 @default.
- W4313131004 cites W3106339292 @default.
- W4313131004 cites W3118836608 @default.
- W4313131004 cites W3138753709 @default.
- W4313131004 cites W3184063123 @default.
- W4313131004 cites W3217215791 @default.
- W4313131004 cites W4245150221 @default.
- W4313131004 cites W4286002033 @default.
- W4313131004 cites W4301319679 @default.
- W4313131004 cites W4376595525 @default.
- W4313131004 doi "https://doi.org/10.1016/bs.ssp.2022.08.001" @default.
- W4313131004 hasPublicationYear "2022" @default.
- W4313131004 type Work @default.
- W4313131004 citedByCount "1" @default.
- W4313131004 countsByYear W43131310042023 @default.
- W4313131004 crossrefType "book-chapter" @default.
- W4313131004 hasAuthorship W4313131004A5063458295 @default.
- W4313131004 hasConcept C120665830 @default.
- W4313131004 hasConcept C121332964 @default.
- W4313131004 hasConcept C130725296 @default.
- W4313131004 hasConcept C133386390 @default.
- W4313131004 hasConcept C135402231 @default.
- W4313131004 hasConcept C192562407 @default.
- W4313131004 hasConcept C26873012 @default.
- W4313131004 hasConcept C30475298 @default.
- W4313131004 hasConcept C49040817 @default.
- W4313131004 hasConcept C62520636 @default.
- W4313131004 hasConcept C74902906 @default.
- W4313131004 hasConceptScore W4313131004C120665830 @default.
- W4313131004 hasConceptScore W4313131004C121332964 @default.