Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313133172> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4313133172 abstract "In machine learning applications, the data are often high-dimensional and intrinsically related. It is often of interest finding the underlying structure and the causal relationships of the data and representing the findings with directed graphs. In this paper, we study multivariate time series, where each series is associated with a node of a graph, and where the objective is estimating the topology of the graph that reflects how the nodes of the graph affect each other, if at all. We propose a novel Bayesian method which allows for nonlinear and multiple lag relationships among the time series. The method is based on Gaussian processes, and it treats the entries of the adjacency matrix as hyperparameters. The method employs an automatic relevance determination (ARD) kernel and allows for learning of the mapping function from selected past data to current data. The resulting adjacency matrix provides the intrinsic structure and answers questions related to causality. Numerical tests show that the proposed method has comparable or better performance than state-of-the-art methods." @default.
- W4313133172 created "2023-01-06" @default.
- W4313133172 creator A5006962534 @default.
- W4313133172 creator A5016153147 @default.
- W4313133172 creator A5024535323 @default.
- W4313133172 date "2022-08-29" @default.
- W4313133172 modified "2023-09-29" @default.
- W4313133172 title "Gaussian Processes for Topology Inference of Directed Graphs" @default.
- W4313133172 cites W2011863452 @default.
- W4313133172 cites W2061738100 @default.
- W4313133172 cites W2064123298 @default.
- W4313133172 cites W2068000292 @default.
- W4313133172 cites W2096664445 @default.
- W4313133172 cites W2108069662 @default.
- W4313133172 cites W2127888717 @default.
- W4313133172 cites W2171713066 @default.
- W4313133172 cites W2289691268 @default.
- W4313133172 cites W2520179645 @default.
- W4313133172 cites W2615556757 @default.
- W4313133172 cites W2627924202 @default.
- W4313133172 cites W2938546881 @default.
- W4313133172 cites W2964012239 @default.
- W4313133172 cites W2994097903 @default.
- W4313133172 cites W3015225021 @default.
- W4313133172 cites W3112870281 @default.
- W4313133172 cites W3114516319 @default.
- W4313133172 cites W3198631904 @default.
- W4313133172 doi "https://doi.org/10.23919/eusipco55093.2022.9909923" @default.
- W4313133172 hasPublicationYear "2022" @default.
- W4313133172 type Work @default.
- W4313133172 citedByCount "1" @default.
- W4313133172 countsByYear W43131331722023 @default.
- W4313133172 crossrefType "proceedings-article" @default.
- W4313133172 hasAuthorship W4313133172A5006962534 @default.
- W4313133172 hasAuthorship W4313133172A5016153147 @default.
- W4313133172 hasAuthorship W4313133172A5024535323 @default.
- W4313133172 hasConcept C110484373 @default.
- W4313133172 hasConcept C11413529 @default.
- W4313133172 hasConcept C119857082 @default.
- W4313133172 hasConcept C132525143 @default.
- W4313133172 hasConcept C143724316 @default.
- W4313133172 hasConcept C151406439 @default.
- W4313133172 hasConcept C151730666 @default.
- W4313133172 hasConcept C154945302 @default.
- W4313133172 hasConcept C180356752 @default.
- W4313133172 hasConcept C2776214188 @default.
- W4313133172 hasConcept C41008148 @default.
- W4313133172 hasConcept C80444323 @default.
- W4313133172 hasConcept C8642999 @default.
- W4313133172 hasConcept C86803240 @default.
- W4313133172 hasConceptScore W4313133172C110484373 @default.
- W4313133172 hasConceptScore W4313133172C11413529 @default.
- W4313133172 hasConceptScore W4313133172C119857082 @default.
- W4313133172 hasConceptScore W4313133172C132525143 @default.
- W4313133172 hasConceptScore W4313133172C143724316 @default.
- W4313133172 hasConceptScore W4313133172C151406439 @default.
- W4313133172 hasConceptScore W4313133172C151730666 @default.
- W4313133172 hasConceptScore W4313133172C154945302 @default.
- W4313133172 hasConceptScore W4313133172C180356752 @default.
- W4313133172 hasConceptScore W4313133172C2776214188 @default.
- W4313133172 hasConceptScore W4313133172C41008148 @default.
- W4313133172 hasConceptScore W4313133172C80444323 @default.
- W4313133172 hasConceptScore W4313133172C8642999 @default.
- W4313133172 hasConceptScore W4313133172C86803240 @default.
- W4313133172 hasFunder F4320306076 @default.
- W4313133172 hasLocation W43131331721 @default.
- W4313133172 hasOpenAccess W4313133172 @default.
- W4313133172 hasPrimaryLocation W43131331721 @default.
- W4313133172 hasRelatedWork W1997448565 @default.
- W4313133172 hasRelatedWork W2353839841 @default.
- W4313133172 hasRelatedWork W3199608561 @default.
- W4313133172 hasRelatedWork W4210794429 @default.
- W4313133172 hasRelatedWork W4223456145 @default.
- W4313133172 hasRelatedWork W4280535922 @default.
- W4313133172 hasRelatedWork W4285170134 @default.
- W4313133172 hasRelatedWork W4293519063 @default.
- W4313133172 hasRelatedWork W4295309597 @default.
- W4313133172 hasRelatedWork W4309113015 @default.
- W4313133172 isParatext "false" @default.
- W4313133172 isRetracted "false" @default.
- W4313133172 workType "article" @default.