Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313135020> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313135020 abstract "Meat is one of the various protein sources that needed for human body. Now, the consumption of meat has always increased from year to year due to various factors, including having high nutrition, as a source of protein, to its distribution which can be found almost everywhere. In selecting meat, many consumers do not know about the quality of the meat offered by the seller, both the duration and the preservatives used by the seller in marketing the meat. The conventional way buyers use to determine the quality of meat is by checking the smell of the meat using the nose manually. In overcoming these problems, determining the quality of the meat needed the right method in checking. By applying the Random Forest Classification and Regression method, Electronic Nose can work structured on every component needed to determine meat quality. This experiment showed that the Random Forest Classification and Regression algorithm obtained that the best parameter for classification is n estimators 72 with result mean test score is 0.954955 and the best parameter for regression is n estimators 233 with result RMSE is 0.0141 and R2 is 0.9876." @default.
- W4313135020 created "2023-01-06" @default.
- W4313135020 creator A5035505837 @default.
- W4313135020 creator A5068424328 @default.
- W4313135020 creator A5087796016 @default.
- W4313135020 date "2022-08-24" @default.
- W4313135020 modified "2023-09-26" @default.
- W4313135020 title "Random Forest Algorithm for Meat Classification and Microbial Population Prediction" @default.
- W4313135020 cites W2779508901 @default.
- W4313135020 cites W2782791063 @default.
- W4313135020 cites W2791268528 @default.
- W4313135020 cites W2793997912 @default.
- W4313135020 cites W2900727266 @default.
- W4313135020 cites W2900872689 @default.
- W4313135020 cites W2998635703 @default.
- W4313135020 cites W3030419021 @default.
- W4313135020 cites W3035368758 @default.
- W4313135020 cites W3038780555 @default.
- W4313135020 cites W3067119061 @default.
- W4313135020 cites W3080339908 @default.
- W4313135020 cites W3085864337 @default.
- W4313135020 cites W3088516434 @default.
- W4313135020 cites W3092046220 @default.
- W4313135020 cites W3095666019 @default.
- W4313135020 cites W3097068147 @default.
- W4313135020 cites W3126792975 @default.
- W4313135020 cites W3136302191 @default.
- W4313135020 cites W3197801809 @default.
- W4313135020 cites W3207917444 @default.
- W4313135020 cites W3214293667 @default.
- W4313135020 cites W4211181058 @default.
- W4313135020 cites W4224216968 @default.
- W4313135020 cites W4226099490 @default.
- W4313135020 doi "https://doi.org/10.1109/icoiact55506.2022.9972082" @default.
- W4313135020 hasPublicationYear "2022" @default.
- W4313135020 type Work @default.
- W4313135020 citedByCount "1" @default.
- W4313135020 countsByYear W43131350202023 @default.
- W4313135020 crossrefType "proceedings-article" @default.
- W4313135020 hasAuthorship W4313135020A5035505837 @default.
- W4313135020 hasAuthorship W4313135020A5068424328 @default.
- W4313135020 hasAuthorship W4313135020A5087796016 @default.
- W4313135020 hasConcept C105795698 @default.
- W4313135020 hasConcept C111472728 @default.
- W4313135020 hasConcept C11413529 @default.
- W4313135020 hasConcept C119857082 @default.
- W4313135020 hasConcept C138885662 @default.
- W4313135020 hasConcept C152877465 @default.
- W4313135020 hasConcept C169258074 @default.
- W4313135020 hasConcept C185429906 @default.
- W4313135020 hasConcept C2779530757 @default.
- W4313135020 hasConcept C2908647359 @default.
- W4313135020 hasConcept C33923547 @default.
- W4313135020 hasConcept C41008148 @default.
- W4313135020 hasConcept C71924100 @default.
- W4313135020 hasConcept C83546350 @default.
- W4313135020 hasConcept C99454951 @default.
- W4313135020 hasConceptScore W4313135020C105795698 @default.
- W4313135020 hasConceptScore W4313135020C111472728 @default.
- W4313135020 hasConceptScore W4313135020C11413529 @default.
- W4313135020 hasConceptScore W4313135020C119857082 @default.
- W4313135020 hasConceptScore W4313135020C138885662 @default.
- W4313135020 hasConceptScore W4313135020C152877465 @default.
- W4313135020 hasConceptScore W4313135020C169258074 @default.
- W4313135020 hasConceptScore W4313135020C185429906 @default.
- W4313135020 hasConceptScore W4313135020C2779530757 @default.
- W4313135020 hasConceptScore W4313135020C2908647359 @default.
- W4313135020 hasConceptScore W4313135020C33923547 @default.
- W4313135020 hasConceptScore W4313135020C41008148 @default.
- W4313135020 hasConceptScore W4313135020C71924100 @default.
- W4313135020 hasConceptScore W4313135020C83546350 @default.
- W4313135020 hasConceptScore W4313135020C99454951 @default.
- W4313135020 hasLocation W43131350201 @default.
- W4313135020 hasOpenAccess W4313135020 @default.
- W4313135020 hasPrimaryLocation W43131350201 @default.
- W4313135020 hasRelatedWork W1903055531 @default.
- W4313135020 hasRelatedWork W1992354442 @default.
- W4313135020 hasRelatedWork W2072090478 @default.
- W4313135020 hasRelatedWork W2187867791 @default.
- W4313135020 hasRelatedWork W2583008148 @default.
- W4313135020 hasRelatedWork W4285225238 @default.
- W4313135020 hasRelatedWork W4294892151 @default.
- W4313135020 hasRelatedWork W4364301731 @default.
- W4313135020 hasRelatedWork W4366478666 @default.
- W4313135020 hasRelatedWork W2181663161 @default.
- W4313135020 isParatext "false" @default.
- W4313135020 isRetracted "false" @default.
- W4313135020 workType "article" @default.