Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313136246> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4313136246 abstract "Abstract There are a large number of equipment densely arranged in liquids in nuclear power plants, such as fuel assemblies, steam generator heat transfer tubes, spent fuel storage and transportation racks, etc. These equipment are complex in shape and compact in arrangement and have strong fluid-structure coupling effects under excitations, so the calculation is computationally intensive. For such complex structures, the use of porous media models is an important means of structure simplification. The parameters of porous media are often calculated by CFD modeling, and the calculation process is complicated and time-consuming. BP neural network has strong nonlinear mapping capability and can be used to calculate the parameters of porous media. For different racks designs, the gap arrangement is different, and the fluid-structure coupling parameters are also different. Therefore, it is necessary to study the fluid-structure coupling parameters of square tube bundles such as racks. Taking porous storage racks as an example, by building different CFD models, 1366 sets of valid data were obtained for training. This paper uses BP neural network to study the porous medium parameters required for fluid-structure interaction of porous racks. Compared with the CFD calculation method of fine modeling, the calculation error of the additional mass of the porous media model established by the porous media parameters predicted by the neural network is controlled at about 10%. The research results provide a reference for the fast calculation of porous media parameters and fluid-structure interaction." @default.
- W4313136246 created "2023-01-06" @default.
- W4313136246 creator A5018073672 @default.
- W4313136246 creator A5044888006 @default.
- W4313136246 creator A5056036725 @default.
- W4313136246 creator A5057242361 @default.
- W4313136246 creator A5065586051 @default.
- W4313136246 creator A5081355594 @default.
- W4313136246 creator A5091328279 @default.
- W4313136246 creator A5091715880 @default.
- W4313136246 date "2022-08-08" @default.
- W4313136246 modified "2023-09-26" @default.
- W4313136246 title "Parameter Calculation Method of Porous Media Based on BP Neural Network" @default.
- W4313136246 doi "https://doi.org/10.1115/icone29-92382" @default.
- W4313136246 hasPublicationYear "2022" @default.
- W4313136246 type Work @default.
- W4313136246 citedByCount "0" @default.
- W4313136246 crossrefType "proceedings-article" @default.
- W4313136246 hasAuthorship W4313136246A5018073672 @default.
- W4313136246 hasAuthorship W4313136246A5044888006 @default.
- W4313136246 hasAuthorship W4313136246A5056036725 @default.
- W4313136246 hasAuthorship W4313136246A5057242361 @default.
- W4313136246 hasAuthorship W4313136246A5065586051 @default.
- W4313136246 hasAuthorship W4313136246A5081355594 @default.
- W4313136246 hasAuthorship W4313136246A5091328279 @default.
- W4313136246 hasAuthorship W4313136246A5091715880 @default.
- W4313136246 hasConcept C105569014 @default.
- W4313136246 hasConcept C121332964 @default.
- W4313136246 hasConcept C127413603 @default.
- W4313136246 hasConcept C131584629 @default.
- W4313136246 hasConcept C154945302 @default.
- W4313136246 hasConcept C158622935 @default.
- W4313136246 hasConcept C159985019 @default.
- W4313136246 hasConcept C1633027 @default.
- W4313136246 hasConcept C192562407 @default.
- W4313136246 hasConcept C41008148 @default.
- W4313136246 hasConcept C50644808 @default.
- W4313136246 hasConcept C57879066 @default.
- W4313136246 hasConcept C62520636 @default.
- W4313136246 hasConcept C6648577 @default.
- W4313136246 hasConcept C78519656 @default.
- W4313136246 hasConcept C90278072 @default.
- W4313136246 hasConceptScore W4313136246C105569014 @default.
- W4313136246 hasConceptScore W4313136246C121332964 @default.
- W4313136246 hasConceptScore W4313136246C127413603 @default.
- W4313136246 hasConceptScore W4313136246C131584629 @default.
- W4313136246 hasConceptScore W4313136246C154945302 @default.
- W4313136246 hasConceptScore W4313136246C158622935 @default.
- W4313136246 hasConceptScore W4313136246C159985019 @default.
- W4313136246 hasConceptScore W4313136246C1633027 @default.
- W4313136246 hasConceptScore W4313136246C192562407 @default.
- W4313136246 hasConceptScore W4313136246C41008148 @default.
- W4313136246 hasConceptScore W4313136246C50644808 @default.
- W4313136246 hasConceptScore W4313136246C57879066 @default.
- W4313136246 hasConceptScore W4313136246C62520636 @default.
- W4313136246 hasConceptScore W4313136246C6648577 @default.
- W4313136246 hasConceptScore W4313136246C78519656 @default.
- W4313136246 hasConceptScore W4313136246C90278072 @default.
- W4313136246 hasLocation W43131362461 @default.
- W4313136246 hasOpenAccess W4313136246 @default.
- W4313136246 hasPrimaryLocation W43131362461 @default.
- W4313136246 hasRelatedWork W2003558698 @default.
- W4313136246 hasRelatedWork W2353091794 @default.
- W4313136246 hasRelatedWork W2358872172 @default.
- W4313136246 hasRelatedWork W2373796819 @default.
- W4313136246 hasRelatedWork W2391010120 @default.
- W4313136246 hasRelatedWork W2498433176 @default.
- W4313136246 hasRelatedWork W3201524767 @default.
- W4313136246 hasRelatedWork W4225421660 @default.
- W4313136246 hasRelatedWork W4229052372 @default.
- W4313136246 hasRelatedWork W4254014471 @default.
- W4313136246 isParatext "false" @default.
- W4313136246 isRetracted "false" @default.
- W4313136246 workType "article" @default.