Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313136310> ?p ?o ?g. }
- W4313136310 endingPage "253" @default.
- W4313136310 startingPage "235" @default.
- W4313136310 abstract "Although current deep learning-based methods have gained promising performance in the blind single image super-resolution (SISR) task, most of them mainly focus on heuristically constructing diverse network architectures and put less emphasis on the explicit embedding of the physical generation mechanism between blur kernels and high-resolution (HR) images. To alleviate this issue, we propose a model-driven deep neural network, called KXNet, for blind SISR. Specifically, to solve the classical SISR model, we propose a simple-yet-effective iterative algorithm. Then by unfolding the involved iterative steps into the corresponding network module, we naturally construct the KXNet. The main specificity of the proposed KXNet is that the entire learning process is fully and explicitly integrated with the inherent physical mechanism underlying this SISR task. Thus, the learned blur kernel has clear physical patterns and the mutually iterative process between blur kernel and HR image can soundly guide the KXNet to be evolved in the right direction. Extensive experiments on synthetic and real data finely demonstrate the superior accuracy and generality of our method beyond the current representative state-of-the-art blind SISR methods. Code is available at: https://github.com/jiahong-fu/KXNet ." @default.
- W4313136310 created "2023-01-06" @default.
- W4313136310 creator A5022673825 @default.
- W4313136310 creator A5033020983 @default.
- W4313136310 creator A5052780802 @default.
- W4313136310 creator A5075938156 @default.
- W4313136310 creator A5078092645 @default.
- W4313136310 creator A5091017287 @default.
- W4313136310 date "2022-01-01" @default.
- W4313136310 modified "2023-10-11" @default.
- W4313136310 title "KXNet: A Model-Driven Deep Neural Network for Blind Super-Resolution" @default.
- W4313136310 cites W1791560514 @default.
- W4313136310 cites W1885185971 @default.
- W4313136310 cites W1930824406 @default.
- W4313136310 cites W1992309968 @default.
- W4313136310 cites W2029684123 @default.
- W4313136310 cites W2047920195 @default.
- W4313136310 cites W2100556411 @default.
- W4313136310 cites W2104876002 @default.
- W4313136310 cites W2115548755 @default.
- W4313136310 cites W2133665775 @default.
- W4313136310 cites W2146200771 @default.
- W4313136310 cites W2146782367 @default.
- W4313136310 cites W2146842127 @default.
- W4313136310 cites W2167191464 @default.
- W4313136310 cites W2192954843 @default.
- W4313136310 cites W2194775991 @default.
- W4313136310 cites W2200125188 @default.
- W4313136310 cites W2214802144 @default.
- W4313136310 cites W2338287119 @default.
- W4313136310 cites W2474628748 @default.
- W4313136310 cites W2562637781 @default.
- W4313136310 cites W2607041014 @default.
- W4313136310 cites W2607202125 @default.
- W4313136310 cites W2613155248 @default.
- W4313136310 cites W2740543610 @default.
- W4313136310 cites W2741137940 @default.
- W4313136310 cites W2866634454 @default.
- W4313136310 cites W2895176907 @default.
- W4313136310 cites W2955408208 @default.
- W4313136310 cites W2962814024 @default.
- W4313136310 cites W2963284277 @default.
- W4313136310 cites W2963372104 @default.
- W4313136310 cites W2963774720 @default.
- W4313136310 cites W2964101377 @default.
- W4313136310 cites W2964277374 @default.
- W4313136310 cites W3016355810 @default.
- W4313136310 cites W3034724715 @default.
- W4313136310 cites W3035250394 @default.
- W4313136310 cites W3035302306 @default.
- W4313136310 cites W3096739052 @default.
- W4313136310 cites W3104725225 @default.
- W4313136310 cites W3168684807 @default.
- W4313136310 cites W3174060721 @default.
- W4313136310 cites W3203107667 @default.
- W4313136310 cites W3203631022 @default.
- W4313136310 cites W3204971388 @default.
- W4313136310 cites W3207918547 @default.
- W4313136310 cites W4226063600 @default.
- W4313136310 doi "https://doi.org/10.1007/978-3-031-19800-7_14" @default.
- W4313136310 hasPublicationYear "2022" @default.
- W4313136310 type Work @default.
- W4313136310 citedByCount "2" @default.
- W4313136310 countsByYear W43131363102023 @default.
- W4313136310 crossrefType "book-chapter" @default.
- W4313136310 hasAuthorship W4313136310A5022673825 @default.
- W4313136310 hasAuthorship W4313136310A5033020983 @default.
- W4313136310 hasAuthorship W4313136310A5052780802 @default.
- W4313136310 hasAuthorship W4313136310A5075938156 @default.
- W4313136310 hasAuthorship W4313136310A5078092645 @default.
- W4313136310 hasAuthorship W4313136310A5091017287 @default.
- W4313136310 hasBestOaLocation W43131363102 @default.
- W4313136310 hasConcept C108583219 @default.
- W4313136310 hasConcept C111919701 @default.
- W4313136310 hasConcept C11413529 @default.
- W4313136310 hasConcept C114614502 @default.
- W4313136310 hasConcept C115903868 @default.
- W4313136310 hasConcept C115961682 @default.
- W4313136310 hasConcept C120665830 @default.
- W4313136310 hasConcept C121332964 @default.
- W4313136310 hasConcept C141239990 @default.
- W4313136310 hasConcept C143587482 @default.
- W4313136310 hasConcept C153180895 @default.
- W4313136310 hasConcept C154945302 @default.
- W4313136310 hasConcept C15744967 @default.
- W4313136310 hasConcept C159694833 @default.
- W4313136310 hasConcept C177264268 @default.
- W4313136310 hasConcept C192209626 @default.
- W4313136310 hasConcept C199360897 @default.
- W4313136310 hasConcept C2776760102 @default.
- W4313136310 hasConcept C2780767217 @default.
- W4313136310 hasConcept C33923547 @default.
- W4313136310 hasConcept C41008148 @default.
- W4313136310 hasConcept C41608201 @default.
- W4313136310 hasConcept C43126263 @default.
- W4313136310 hasConcept C50644808 @default.
- W4313136310 hasConcept C542102704 @default.
- W4313136310 hasConcept C74193536 @default.