Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313136327> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4313136327 abstract "Accurate cell segmentation and counting play an important role in medical diagnosis. However, the size and shape of cells are varied largely, and the presence of overlapping cells complicates cell counting. Recent studies have shown that multi-task learning methods perform well in deep learning. In specific, we design Multi-task Segmentation Regression Counting Network (MSRCN). For cell segmentation, a multi-scale attention mechanism module is designed to suppress irrelevant regions and learns salient features for a specific task. For cell counting, a regression model is utilized to learn a mapping from cell feature information to target counts. The proposed MSRCN model is analyzed and compared with other states of the art cell segmentation methods and cell counting methods. MSRCN outperforms these methods in all evaluation metrics. The Dice similarity coefficient, root mean square error, and mean absolute error of the proposed method is 0.9316, 2.1215, and 1.5927, respectively. The experiments results show that the proposed method not only improves the functioning of cell segmentation, but also outperforms direct regression counting methods in terms of cell counting." @default.
- W4313136327 created "2023-01-06" @default.
- W4313136327 creator A5030844667 @default.
- W4313136327 creator A5054008561 @default.
- W4313136327 creator A5073494285 @default.
- W4313136327 date "2022-10-13" @default.
- W4313136327 modified "2023-09-27" @default.
- W4313136327 title "MSRCN: Multi-task Learning Network for Cell Segmentation and Regression Counting" @default.
- W4313136327 cites W2019062120 @default.
- W4313136327 cites W2150823843 @default.
- W4313136327 cites W2194775991 @default.
- W4313136327 cites W2592905743 @default.
- W4313136327 cites W2914272101 @default.
- W4313136327 cites W2955058313 @default.
- W4313136327 cites W2958711196 @default.
- W4313136327 cites W2963150697 @default.
- W4313136327 cites W2963826106 @default.
- W4313136327 cites W2972080651 @default.
- W4313136327 cites W2974825848 @default.
- W4313136327 cites W3092660013 @default.
- W4313136327 cites W3094897602 @default.
- W4313136327 cites W3103117538 @default.
- W4313136327 cites W3118362352 @default.
- W4313136327 cites W3165184255 @default.
- W4313136327 cites W3169116089 @default.
- W4313136327 cites W3216149514 @default.
- W4313136327 doi "https://doi.org/10.1145/3570773.3570816" @default.
- W4313136327 hasPublicationYear "2022" @default.
- W4313136327 type Work @default.
- W4313136327 citedByCount "0" @default.
- W4313136327 crossrefType "proceedings-article" @default.
- W4313136327 hasAuthorship W4313136327A5030844667 @default.
- W4313136327 hasAuthorship W4313136327A5054008561 @default.
- W4313136327 hasAuthorship W4313136327A5073494285 @default.
- W4313136327 hasConcept C103278499 @default.
- W4313136327 hasConcept C105795698 @default.
- W4313136327 hasConcept C115961682 @default.
- W4313136327 hasConcept C124504099 @default.
- W4313136327 hasConcept C138885662 @default.
- W4313136327 hasConcept C1491633281 @default.
- W4313136327 hasConcept C153180895 @default.
- W4313136327 hasConcept C154945302 @default.
- W4313136327 hasConcept C162324750 @default.
- W4313136327 hasConcept C163892561 @default.
- W4313136327 hasConcept C187736073 @default.
- W4313136327 hasConcept C2583947 @default.
- W4313136327 hasConcept C2776401178 @default.
- W4313136327 hasConcept C2780451532 @default.
- W4313136327 hasConcept C29537977 @default.
- W4313136327 hasConcept C33923547 @default.
- W4313136327 hasConcept C41008148 @default.
- W4313136327 hasConcept C41895202 @default.
- W4313136327 hasConcept C54355233 @default.
- W4313136327 hasConcept C83546350 @default.
- W4313136327 hasConcept C86803240 @default.
- W4313136327 hasConcept C89600930 @default.
- W4313136327 hasConceptScore W4313136327C103278499 @default.
- W4313136327 hasConceptScore W4313136327C105795698 @default.
- W4313136327 hasConceptScore W4313136327C115961682 @default.
- W4313136327 hasConceptScore W4313136327C124504099 @default.
- W4313136327 hasConceptScore W4313136327C138885662 @default.
- W4313136327 hasConceptScore W4313136327C1491633281 @default.
- W4313136327 hasConceptScore W4313136327C153180895 @default.
- W4313136327 hasConceptScore W4313136327C154945302 @default.
- W4313136327 hasConceptScore W4313136327C162324750 @default.
- W4313136327 hasConceptScore W4313136327C163892561 @default.
- W4313136327 hasConceptScore W4313136327C187736073 @default.
- W4313136327 hasConceptScore W4313136327C2583947 @default.
- W4313136327 hasConceptScore W4313136327C2776401178 @default.
- W4313136327 hasConceptScore W4313136327C2780451532 @default.
- W4313136327 hasConceptScore W4313136327C29537977 @default.
- W4313136327 hasConceptScore W4313136327C33923547 @default.
- W4313136327 hasConceptScore W4313136327C41008148 @default.
- W4313136327 hasConceptScore W4313136327C41895202 @default.
- W4313136327 hasConceptScore W4313136327C54355233 @default.
- W4313136327 hasConceptScore W4313136327C83546350 @default.
- W4313136327 hasConceptScore W4313136327C86803240 @default.
- W4313136327 hasConceptScore W4313136327C89600930 @default.
- W4313136327 hasLocation W43131363271 @default.
- W4313136327 hasOpenAccess W4313136327 @default.
- W4313136327 hasPrimaryLocation W43131363271 @default.
- W4313136327 hasRelatedWork W2142048117 @default.
- W4313136327 hasRelatedWork W2532775738 @default.
- W4313136327 hasRelatedWork W2630229246 @default.
- W4313136327 hasRelatedWork W2769435486 @default.
- W4313136327 hasRelatedWork W2897195263 @default.
- W4313136327 hasRelatedWork W2979336375 @default.
- W4313136327 hasRelatedWork W2999580839 @default.
- W4313136327 hasRelatedWork W3130296613 @default.
- W4313136327 hasRelatedWork W3135174555 @default.
- W4313136327 hasRelatedWork W3152950745 @default.
- W4313136327 isParatext "false" @default.
- W4313136327 isRetracted "false" @default.
- W4313136327 workType "article" @default.