Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313141197> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4313141197 abstract "Recent years have seen a noticeable shift towards the use of automated mechanisms by medical professionals for disease identification with an aim to also eventually predict life threatening diseases. The use of Artificial Intelligence is at the centre of such automated approaches, generally powered by the magnitude of rich datasets of medical imaging. Current approaches involving Machine Learning and other associated technologies have shown promising results in this domain with somewhat accurate detection of certain diseases. However, there are limitations with respect to resource consumption and accurate detection and a significant lack of accurate prediction models. This paper presents a thorough analysis to understand the origins of disease detection through object localisation. Discussion in this paper is based on the identification of certain fruits and vegetables that have complicated visual attributes from machine’s perspective. This analogy is then used to enhance the understanding of disease detection that can lead to accurate prediction." @default.
- W4313141197 created "2023-01-06" @default.
- W4313141197 creator A5036473624 @default.
- W4313141197 creator A5042689670 @default.
- W4313141197 date "2022-08-01" @default.
- W4313141197 modified "2023-09-27" @default.
- W4313141197 title "From Mushroom-Peaches to Disease Prediction: Deep Learning Approaches" @default.
- W4313141197 cites W2039353946 @default.
- W4313141197 cites W2048278407 @default.
- W4313141197 cites W2125641978 @default.
- W4313141197 cites W2394834963 @default.
- W4313141197 cites W2528463361 @default.
- W4313141197 cites W2548063209 @default.
- W4313141197 cites W2548930122 @default.
- W4313141197 cites W2621748147 @default.
- W4313141197 cites W2768948787 @default.
- W4313141197 cites W2771644115 @default.
- W4313141197 cites W2772059204 @default.
- W4313141197 cites W2785972335 @default.
- W4313141197 cites W2803801244 @default.
- W4313141197 cites W2804436788 @default.
- W4313141197 cites W2808059067 @default.
- W4313141197 cites W2884367402 @default.
- W4313141197 cites W2893333163 @default.
- W4313141197 cites W2911486422 @default.
- W4313141197 cites W2969191453 @default.
- W4313141197 cites W2982284503 @default.
- W4313141197 cites W2985431718 @default.
- W4313141197 cites W2988916019 @default.
- W4313141197 cites W2997408160 @default.
- W4313141197 cites W2997592810 @default.
- W4313141197 cites W3001083904 @default.
- W4313141197 cites W3008115128 @default.
- W4313141197 cites W3013211776 @default.
- W4313141197 cites W3019909811 @default.
- W4313141197 cites W3034081200 @default.
- W4313141197 cites W3034908462 @default.
- W4313141197 cites W3049192349 @default.
- W4313141197 cites W3081495241 @default.
- W4313141197 cites W3093597327 @default.
- W4313141197 cites W3122799380 @default.
- W4313141197 cites W3132626268 @default.
- W4313141197 cites W3133665664 @default.
- W4313141197 cites W3135688577 @default.
- W4313141197 cites W3159196909 @default.
- W4313141197 cites W3178544809 @default.
- W4313141197 cites W3183725537 @default.
- W4313141197 cites W3189955102 @default.
- W4313141197 cites W4206029916 @default.
- W4313141197 cites W4206251867 @default.
- W4313141197 cites W2051429545 @default.
- W4313141197 doi "https://doi.org/10.1109/ficloud57274.2022.00024" @default.
- W4313141197 hasPublicationYear "2022" @default.
- W4313141197 type Work @default.
- W4313141197 citedByCount "0" @default.
- W4313141197 crossrefType "proceedings-article" @default.
- W4313141197 hasAuthorship W4313141197A5036473624 @default.
- W4313141197 hasAuthorship W4313141197A5042689670 @default.
- W4313141197 hasConcept C108583219 @default.
- W4313141197 hasConcept C116834253 @default.
- W4313141197 hasConcept C119857082 @default.
- W4313141197 hasConcept C12713177 @default.
- W4313141197 hasConcept C134306372 @default.
- W4313141197 hasConcept C154945302 @default.
- W4313141197 hasConcept C206345919 @default.
- W4313141197 hasConcept C31258907 @default.
- W4313141197 hasConcept C33923547 @default.
- W4313141197 hasConcept C36503486 @default.
- W4313141197 hasConcept C41008148 @default.
- W4313141197 hasConcept C59822182 @default.
- W4313141197 hasConcept C86803240 @default.
- W4313141197 hasConceptScore W4313141197C108583219 @default.
- W4313141197 hasConceptScore W4313141197C116834253 @default.
- W4313141197 hasConceptScore W4313141197C119857082 @default.
- W4313141197 hasConceptScore W4313141197C12713177 @default.
- W4313141197 hasConceptScore W4313141197C134306372 @default.
- W4313141197 hasConceptScore W4313141197C154945302 @default.
- W4313141197 hasConceptScore W4313141197C206345919 @default.
- W4313141197 hasConceptScore W4313141197C31258907 @default.
- W4313141197 hasConceptScore W4313141197C33923547 @default.
- W4313141197 hasConceptScore W4313141197C36503486 @default.
- W4313141197 hasConceptScore W4313141197C41008148 @default.
- W4313141197 hasConceptScore W4313141197C59822182 @default.
- W4313141197 hasConceptScore W4313141197C86803240 @default.
- W4313141197 hasLocation W43131411971 @default.
- W4313141197 hasOpenAccess W4313141197 @default.
- W4313141197 hasPrimaryLocation W43131411971 @default.
- W4313141197 hasRelatedWork W2922457425 @default.
- W4313141197 hasRelatedWork W3014300295 @default.
- W4313141197 hasRelatedWork W3164822677 @default.
- W4313141197 hasRelatedWork W3215138031 @default.
- W4313141197 hasRelatedWork W4223943233 @default.
- W4313141197 hasRelatedWork W4225161397 @default.
- W4313141197 hasRelatedWork W4250304930 @default.
- W4313141197 hasRelatedWork W4299487748 @default.
- W4313141197 hasRelatedWork W4309045103 @default.
- W4313141197 hasRelatedWork W4312200629 @default.
- W4313141197 isParatext "false" @default.
- W4313141197 isRetracted "false" @default.
- W4313141197 workType "article" @default.