Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313143103> ?p ?o ?g. }
- W4313143103 endingPage "130967" @default.
- W4313143103 startingPage "130955" @default.
- W4313143103 abstract "Individuals who demonstrate well-founded fears of persecution or face real risk of being subjected to torture, are eligible for asylum under Danish law. Decision outcomes, however, are often influenced by the subjective perceptions of the asylum applicant’s credibility. Literature reports on correlations between asylum outcomes and various extra-legal factors. Artificial Intelligence has often been used to uncover such correlations and highlight the predictability of the asylum outcomes. In this work, we employ a dataset of asylum decisions in Denmark to study the variations in recognition rates, on the basis of several application features, such as the applicant’s nationality, identified gender, religion etc. We use Machine Learning classifiers to assess the predictability of the cases’ outcomes on the basis of such features. We find that depending on the classifier, and the considered features, different predictability outcomes arise. We highlight, therefore, the need to take such discrepancies into account, before drawing conclusions with regards to the causes of the outcomes’ predictability." @default.
- W4313143103 created "2023-01-06" @default.
- W4313143103 creator A5019154749 @default.
- W4313143103 creator A5033344259 @default.
- W4313143103 creator A5035763854 @default.
- W4313143103 creator A5058890931 @default.
- W4313143103 creator A5075575926 @default.
- W4313143103 creator A5076022384 @default.
- W4313143103 creator A5080904753 @default.
- W4313143103 creator A5085567536 @default.
- W4313143103 date "2022-01-01" @default.
- W4313143103 modified "2023-10-18" @default.
- W4313143103 title "Machine Learning and Asylum Adjudications: From Analysis of Variations to Outcome Predictions" @default.
- W4313143103 cites W124542521 @default.
- W4313143103 cites W2005918637 @default.
- W4313143103 cites W2041623960 @default.
- W4313143103 cites W2104540263 @default.
- W4313143103 cites W2157526442 @default.
- W4313143103 cites W2307977142 @default.
- W4313143103 cites W2519434959 @default.
- W4313143103 cites W2536769020 @default.
- W4313143103 cites W2592606831 @default.
- W4313143103 cites W2593732251 @default.
- W4313143103 cites W269557233 @default.
- W4313143103 cites W2750144484 @default.
- W4313143103 cites W2786242872 @default.
- W4313143103 cites W2799690146 @default.
- W4313143103 cites W2799695077 @default.
- W4313143103 cites W2885615224 @default.
- W4313143103 cites W2898257620 @default.
- W4313143103 cites W2940105172 @default.
- W4313143103 cites W2942227409 @default.
- W4313143103 cites W2952477473 @default.
- W4313143103 cites W2954257417 @default.
- W4313143103 cites W2960053436 @default.
- W4313143103 cites W2960573169 @default.
- W4313143103 cites W3012556674 @default.
- W4313143103 cites W3014186206 @default.
- W4313143103 cites W3017195291 @default.
- W4313143103 cites W3017746504 @default.
- W4313143103 cites W3027963383 @default.
- W4313143103 cites W3029690672 @default.
- W4313143103 cites W3121382603 @default.
- W4313143103 cites W3123927179 @default.
- W4313143103 cites W3124363787 @default.
- W4313143103 cites W3208472145 @default.
- W4313143103 cites W4252594880 @default.
- W4313143103 doi "https://doi.org/10.1109/access.2022.3229053" @default.
- W4313143103 hasPublicationYear "2022" @default.
- W4313143103 type Work @default.
- W4313143103 citedByCount "1" @default.
- W4313143103 countsByYear W43131431032023 @default.
- W4313143103 crossrefType "journal-article" @default.
- W4313143103 hasAuthorship W4313143103A5019154749 @default.
- W4313143103 hasAuthorship W4313143103A5033344259 @default.
- W4313143103 hasAuthorship W4313143103A5035763854 @default.
- W4313143103 hasAuthorship W4313143103A5058890931 @default.
- W4313143103 hasAuthorship W4313143103A5075575926 @default.
- W4313143103 hasAuthorship W4313143103A5076022384 @default.
- W4313143103 hasAuthorship W4313143103A5080904753 @default.
- W4313143103 hasAuthorship W4313143103A5085567536 @default.
- W4313143103 hasBestOaLocation W43131431031 @default.
- W4313143103 hasConcept C105795698 @default.
- W4313143103 hasConcept C119857082 @default.
- W4313143103 hasConcept C154945302 @default.
- W4313143103 hasConcept C15744967 @default.
- W4313143103 hasConcept C169437150 @default.
- W4313143103 hasConcept C173145845 @default.
- W4313143103 hasConcept C17744445 @default.
- W4313143103 hasConcept C197640229 @default.
- W4313143103 hasConcept C199539241 @default.
- W4313143103 hasConcept C204434341 @default.
- W4313143103 hasConcept C2777704498 @default.
- W4313143103 hasConcept C2780224610 @default.
- W4313143103 hasConcept C33923547 @default.
- W4313143103 hasConcept C41008148 @default.
- W4313143103 hasConcept C537575062 @default.
- W4313143103 hasConcept C544040105 @default.
- W4313143103 hasConcept C77805123 @default.
- W4313143103 hasConcept C94625758 @default.
- W4313143103 hasConceptScore W4313143103C105795698 @default.
- W4313143103 hasConceptScore W4313143103C119857082 @default.
- W4313143103 hasConceptScore W4313143103C154945302 @default.
- W4313143103 hasConceptScore W4313143103C15744967 @default.
- W4313143103 hasConceptScore W4313143103C169437150 @default.
- W4313143103 hasConceptScore W4313143103C173145845 @default.
- W4313143103 hasConceptScore W4313143103C17744445 @default.
- W4313143103 hasConceptScore W4313143103C197640229 @default.
- W4313143103 hasConceptScore W4313143103C199539241 @default.
- W4313143103 hasConceptScore W4313143103C204434341 @default.
- W4313143103 hasConceptScore W4313143103C2777704498 @default.
- W4313143103 hasConceptScore W4313143103C2780224610 @default.
- W4313143103 hasConceptScore W4313143103C33923547 @default.
- W4313143103 hasConceptScore W4313143103C41008148 @default.
- W4313143103 hasConceptScore W4313143103C537575062 @default.
- W4313143103 hasConceptScore W4313143103C544040105 @default.
- W4313143103 hasConceptScore W4313143103C77805123 @default.
- W4313143103 hasConceptScore W4313143103C94625758 @default.