Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313146324> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W4313146324 abstract "Automated detection of cardiovascular diseases (CVDs) from Electrocardiogram (ECG) recordings is a problem of immense practical interest and it is associated with considerable research challenges. In this paper, we develop an ECG classification model that is capable of satisfying a practical clinical requirement of automated CVD screening solution, where the medical domain principle is to minimize the false negative rates of decisive diagnosis or to improve sensitivity of the critical CVD classes. In this work, we attempt to solve this unique domain principle challenge and propose novel hybrid deep neural model architecture called domain-principled ResNet-Transformer, which consists of two components-ResNet-Transformer network and domain-principled inference. Residual Network or ResNet acts as the feature extractor from the ECG signal to construct lower dimensional feature embeddings, which are fed to the transformer network to capture the patterns in ECG signals and learn the internal information between the embeddings for classification. While the proposed ResNet-Transformer model demonstrates reliable classification performance, the domain-principled inference algorithm ensures that the model is capable of higher sensitivity measures of the critical diagnosis classes, where affinity propagation-based unsupervised learning approach is proposed to maximize the reward of successfully predicting the critical CVDs. We have experimented with Physionet 2020 ECG datasets, one of the largest publicly available 12-lead ECG datasets of its kind and empirical results demonstrate that the classification performance of our ResNet-Transformer model significantly outperforms the current state-of-the-art algorithms. Moreover, the ablation study establishes the unique proposition of our reward-centric inference method to maximize sensitivity towards critical CVD classes." @default.
- W4313146324 created "2023-01-06" @default.
- W4313146324 date "2022-07-18" @default.
- W4313146324 modified "2023-10-18" @default.
- W4313146324 title "Domain-principled Inference with ResNet-Transformer Model for 12-lead ECG Classification" @default.
- W4313146324 cites W2162693370 @default.
- W4313146324 cites W2165232124 @default.
- W4313146324 cites W2194775991 @default.
- W4313146324 cites W2412702708 @default.
- W4313146324 cites W2551949036 @default.
- W4313146324 cites W2902644322 @default.
- W4313146324 cites W3018960895 @default.
- W4313146324 cites W3036116092 @default.
- W4313146324 cites W3098699929 @default.
- W4313146324 cites W3121032337 @default.
- W4313146324 cites W3163349606 @default.
- W4313146324 doi "https://doi.org/10.1109/ijcnn55064.2022.9892674" @default.
- W4313146324 hasPublicationYear "2022" @default.
- W4313146324 type Work @default.
- W4313146324 citedByCount "0" @default.
- W4313146324 crossrefType "proceedings-article" @default.
- W4313146324 hasConcept C108583219 @default.
- W4313146324 hasConcept C117978034 @default.
- W4313146324 hasConcept C119599485 @default.
- W4313146324 hasConcept C119857082 @default.
- W4313146324 hasConcept C124101348 @default.
- W4313146324 hasConcept C127413603 @default.
- W4313146324 hasConcept C153180895 @default.
- W4313146324 hasConcept C154945302 @default.
- W4313146324 hasConcept C165801399 @default.
- W4313146324 hasConcept C21880701 @default.
- W4313146324 hasConcept C2776214188 @default.
- W4313146324 hasConcept C2944601119 @default.
- W4313146324 hasConcept C41008148 @default.
- W4313146324 hasConcept C50644808 @default.
- W4313146324 hasConcept C52622490 @default.
- W4313146324 hasConcept C66322947 @default.
- W4313146324 hasConceptScore W4313146324C108583219 @default.
- W4313146324 hasConceptScore W4313146324C117978034 @default.
- W4313146324 hasConceptScore W4313146324C119599485 @default.
- W4313146324 hasConceptScore W4313146324C119857082 @default.
- W4313146324 hasConceptScore W4313146324C124101348 @default.
- W4313146324 hasConceptScore W4313146324C127413603 @default.
- W4313146324 hasConceptScore W4313146324C153180895 @default.
- W4313146324 hasConceptScore W4313146324C154945302 @default.
- W4313146324 hasConceptScore W4313146324C165801399 @default.
- W4313146324 hasConceptScore W4313146324C21880701 @default.
- W4313146324 hasConceptScore W4313146324C2776214188 @default.
- W4313146324 hasConceptScore W4313146324C2944601119 @default.
- W4313146324 hasConceptScore W4313146324C41008148 @default.
- W4313146324 hasConceptScore W4313146324C50644808 @default.
- W4313146324 hasConceptScore W4313146324C52622490 @default.
- W4313146324 hasConceptScore W4313146324C66322947 @default.
- W4313146324 hasLocation W43131463241 @default.
- W4313146324 hasOpenAccess W4313146324 @default.
- W4313146324 hasPrimaryLocation W43131463241 @default.
- W4313146324 hasRelatedWork W2009271408 @default.
- W4313146324 hasRelatedWork W2732542196 @default.
- W4313146324 hasRelatedWork W2773120646 @default.
- W4313146324 hasRelatedWork W2774265021 @default.
- W4313146324 hasRelatedWork W2899683012 @default.
- W4313146324 hasRelatedWork W2994855682 @default.
- W4313146324 hasRelatedWork W3136979370 @default.
- W4313146324 hasRelatedWork W3156786002 @default.
- W4313146324 hasRelatedWork W3186111093 @default.
- W4313146324 hasRelatedWork W4307883119 @default.
- W4313146324 isParatext "false" @default.
- W4313146324 isRetracted "false" @default.
- W4313146324 workType "article" @default.