Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313147547> ?p ?o ?g. }
- W4313147547 endingPage "7587" @default.
- W4313147547 startingPage "7574" @default.
- W4313147547 abstract "While electric vehicles (EVs) continue to draw more attention as an alternative to traditional fossil fuel vehicles, the relatively short driving range of EVs is often pointed out as their biggest drawback. In terms of energy consumption, one of the most energy-intensive systems in EVs is the heating, ventilation, and air conditioning (HVAC) system. Most HVAC systems use On/Off or PID control for the actuators, but these control methods have low efficiency and are difficult to apply in multiple-input multiple-output systems. In this paper, we propose a novel multi-agent deep reinforcement learning (MADRL) method to efficiently control the low-level actuators of the EV HAVC systems. Through this method, multiple objectivs such as setpoint temperature, subcooling and efficiency can be considered simultaneously by giving independent rewards for each actuator agent. The proposed method is evaluated via a actual vehicle simulator, and experimental results show that the MADRL-based method consumes only 53% of the energy consumption of PID control on average in a transient phase." @default.
- W4313147547 created "2023-01-06" @default.
- W4313147547 creator A5001090578 @default.
- W4313147547 creator A5002296947 @default.
- W4313147547 creator A5020546696 @default.
- W4313147547 creator A5026581580 @default.
- W4313147547 creator A5027992050 @default.
- W4313147547 creator A5036435567 @default.
- W4313147547 creator A5047698904 @default.
- W4313147547 creator A5054552021 @default.
- W4313147547 creator A5070559681 @default.
- W4313147547 creator A5078483539 @default.
- W4313147547 date "2023-01-01" @default.
- W4313147547 modified "2023-10-05" @default.
- W4313147547 title "Multi-Agent Reinforcement Learning Based Actuator Control for EV HVAC Systems" @default.
- W4313147547 cites W1511742137 @default.
- W4313147547 cites W1542941925 @default.
- W4313147547 cites W1976904966 @default.
- W4313147547 cites W1981585039 @default.
- W4313147547 cites W1991677816 @default.
- W4313147547 cites W2046376809 @default.
- W4313147547 cites W2057987164 @default.
- W4313147547 cites W2099618002 @default.
- W4313147547 cites W2145339207 @default.
- W4313147547 cites W2148638215 @default.
- W4313147547 cites W2511140678 @default.
- W4313147547 cites W2596042306 @default.
- W4313147547 cites W2625874945 @default.
- W4313147547 cites W2736080356 @default.
- W4313147547 cites W2747014259 @default.
- W4313147547 cites W2794201917 @default.
- W4313147547 cites W2795237036 @default.
- W4313147547 cites W2908261578 @default.
- W4313147547 cites W2963122546 @default.
- W4313147547 cites W2981038142 @default.
- W4313147547 cites W2982316857 @default.
- W4313147547 cites W3023669592 @default.
- W4313147547 cites W3037631072 @default.
- W4313147547 cites W3089207091 @default.
- W4313147547 cites W3100459944 @default.
- W4313147547 cites W3156295478 @default.
- W4313147547 cites W4230539994 @default.
- W4313147547 doi "https://doi.org/10.1109/access.2022.3227450" @default.
- W4313147547 hasPublicationYear "2023" @default.
- W4313147547 type Work @default.
- W4313147547 citedByCount "1" @default.
- W4313147547 crossrefType "journal-article" @default.
- W4313147547 hasAuthorship W4313147547A5001090578 @default.
- W4313147547 hasAuthorship W4313147547A5002296947 @default.
- W4313147547 hasAuthorship W4313147547A5020546696 @default.
- W4313147547 hasAuthorship W4313147547A5026581580 @default.
- W4313147547 hasAuthorship W4313147547A5027992050 @default.
- W4313147547 hasAuthorship W4313147547A5036435567 @default.
- W4313147547 hasAuthorship W4313147547A5047698904 @default.
- W4313147547 hasAuthorship W4313147547A5054552021 @default.
- W4313147547 hasAuthorship W4313147547A5070559681 @default.
- W4313147547 hasAuthorship W4313147547A5078483539 @default.
- W4313147547 hasBestOaLocation W43131475471 @default.
- W4313147547 hasConcept C103742991 @default.
- W4313147547 hasConcept C119599485 @default.
- W4313147547 hasConcept C121332964 @default.
- W4313147547 hasConcept C122346748 @default.
- W4313147547 hasConcept C12302492 @default.
- W4313147547 hasConcept C127413603 @default.
- W4313147547 hasConcept C133731056 @default.
- W4313147547 hasConcept C154945302 @default.
- W4313147547 hasConcept C163258240 @default.
- W4313147547 hasConcept C171146098 @default.
- W4313147547 hasConcept C172707124 @default.
- W4313147547 hasConcept C17500928 @default.
- W4313147547 hasConcept C187819001 @default.
- W4313147547 hasConcept C2742236 @default.
- W4313147547 hasConcept C2775924081 @default.
- W4313147547 hasConcept C2779027077 @default.
- W4313147547 hasConcept C2780165032 @default.
- W4313147547 hasConcept C29592376 @default.
- W4313147547 hasConcept C41008148 @default.
- W4313147547 hasConcept C47116090 @default.
- W4313147547 hasConcept C47446073 @default.
- W4313147547 hasConcept C536315585 @default.
- W4313147547 hasConcept C62520636 @default.
- W4313147547 hasConcept C78519656 @default.
- W4313147547 hasConcept C97541855 @default.
- W4313147547 hasConceptScore W4313147547C103742991 @default.
- W4313147547 hasConceptScore W4313147547C119599485 @default.
- W4313147547 hasConceptScore W4313147547C121332964 @default.
- W4313147547 hasConceptScore W4313147547C122346748 @default.
- W4313147547 hasConceptScore W4313147547C12302492 @default.
- W4313147547 hasConceptScore W4313147547C127413603 @default.
- W4313147547 hasConceptScore W4313147547C133731056 @default.
- W4313147547 hasConceptScore W4313147547C154945302 @default.
- W4313147547 hasConceptScore W4313147547C163258240 @default.
- W4313147547 hasConceptScore W4313147547C171146098 @default.
- W4313147547 hasConceptScore W4313147547C172707124 @default.
- W4313147547 hasConceptScore W4313147547C17500928 @default.
- W4313147547 hasConceptScore W4313147547C187819001 @default.
- W4313147547 hasConceptScore W4313147547C2742236 @default.
- W4313147547 hasConceptScore W4313147547C2775924081 @default.