Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313147713> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313147713 endingPage "501" @default.
- W4313147713 startingPage "493" @default.
- W4313147713 abstract "We study the problem of reconstructing a high-dimensional signal <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$mathrm {x} in mathbb {R}^{n}$ </tex-math></inline-formula> from a low-dimensional noisy linear measurement <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$mathrm {y}=mathrm {M}mathrm {x}+mathrm {e} in mathbb {R}^{ell }$ </tex-math></inline-formula> , assuming x admits a certain structure. We model the measurement matrix as M = BA, with arbitrary <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$mathrm {B} in mathbb {R}^{ell times m}$ </tex-math></inline-formula> and sub-gaussian <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$mathrm {A} in mathbb {R}^{m times n}$ </tex-math></inline-formula> ; therefore allowing for a family of random measurement matrices which may have heavy tails, dependent rows and columns, and a large dynamic range for the singular values. The structure is either given as a non-convex cone <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$T subset mathbb {R}^{n}$ </tex-math></inline-formula> , or is induced via minimizing a given convex function <inline-formula xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <tex-math notation=LaTeX>$f(cdot)$ </tex-math></inline-formula> , hence our study is sparsity-free. We prove, in both cases, that an approximate empirical risk minimizer robustly recovers the signal if the effective number of measurements is sufficient, even in the presence of a model mismatch, i.e., the signal not exactly admitting the model’s structure. While in classical compressed sensing the number of independent (sub)-gaussian measurements regulates the possibility of a robust reconstruction, in our setting the effective number of measurements depends on the properties of B. We show that, in this model, the stable rank of B indicates the effective number of measurements, and an accurate recovery is guaranteed whenever it exceeds, to within a constant factor, the effective dimension of the structure set. We apply our results to the special case of generative priors, i.e., when x is close to the range of a Generative Neural Network (GNN) with ReLU activation functions. Also, if the GNN has random weights in the last layer, our theory allows a partial Fourier measurement matrix, thus taking the first step towards a theoretical analysis of compressed sensing MRI with GNN. Our work relies on a recent result in random matrix theory by Jeong et al. (2020)." @default.
- W4313147713 created "2023-01-06" @default.
- W4313147713 creator A5018866413 @default.
- W4313147713 creator A5042188697 @default.
- W4313147713 date "2022-09-01" @default.
- W4313147713 modified "2023-09-26" @default.
- W4313147713 title "Sparsity-Free Compressed Sensing With Applications to Generative Priors" @default.
- W4313147713 cites W1684009677 @default.
- W4313147713 cites W1986554702 @default.
- W4313147713 cites W1996023858 @default.
- W4313147713 cites W1998058722 @default.
- W4313147713 cites W2030449718 @default.
- W4313147713 cites W2055064119 @default.
- W4313147713 cites W2066086960 @default.
- W4313147713 cites W2098996169 @default.
- W4313147713 cites W2112038498 @default.
- W4313147713 cites W2117377454 @default.
- W4313147713 cites W2121716262 @default.
- W4313147713 cites W2129131372 @default.
- W4313147713 cites W2135046866 @default.
- W4313147713 cites W2136559714 @default.
- W4313147713 cites W2145096794 @default.
- W4313147713 cites W2162451874 @default.
- W4313147713 cites W2169382351 @default.
- W4313147713 cites W2288884963 @default.
- W4313147713 cites W2883105305 @default.
- W4313147713 cites W2950190315 @default.
- W4313147713 cites W2962770929 @default.
- W4313147713 cites W2962902493 @default.
- W4313147713 cites W2963017107 @default.
- W4313147713 cites W2963403872 @default.
- W4313147713 cites W2963487846 @default.
- W4313147713 cites W2963627806 @default.
- W4313147713 cites W2963859534 @default.
- W4313147713 cites W2964312599 @default.
- W4313147713 cites W2964322027 @default.
- W4313147713 cites W3035922457 @default.
- W4313147713 cites W3080991685 @default.
- W4313147713 cites W3102903867 @default.
- W4313147713 cites W3109157652 @default.
- W4313147713 cites W3122905329 @default.
- W4313147713 cites W3124617746 @default.
- W4313147713 cites W3137849220 @default.
- W4313147713 cites W3162763183 @default.
- W4313147713 cites W4245577611 @default.
- W4313147713 cites W74946117 @default.
- W4313147713 doi "https://doi.org/10.1109/jsait.2022.3219807" @default.
- W4313147713 hasPublicationYear "2022" @default.
- W4313147713 type Work @default.
- W4313147713 citedByCount "1" @default.
- W4313147713 countsByYear W43131477132022 @default.
- W4313147713 crossrefType "journal-article" @default.
- W4313147713 hasAuthorship W4313147713A5018866413 @default.
- W4313147713 hasAuthorship W4313147713A5042188697 @default.
- W4313147713 hasConcept C114614502 @default.
- W4313147713 hasConcept C118615104 @default.
- W4313147713 hasConcept C136119220 @default.
- W4313147713 hasConcept C202444582 @default.
- W4313147713 hasConcept C33923547 @default.
- W4313147713 hasConcept C45357846 @default.
- W4313147713 hasConcept C94375191 @default.
- W4313147713 hasConceptScore W4313147713C114614502 @default.
- W4313147713 hasConceptScore W4313147713C118615104 @default.
- W4313147713 hasConceptScore W4313147713C136119220 @default.
- W4313147713 hasConceptScore W4313147713C202444582 @default.
- W4313147713 hasConceptScore W4313147713C33923547 @default.
- W4313147713 hasConceptScore W4313147713C45357846 @default.
- W4313147713 hasConceptScore W4313147713C94375191 @default.
- W4313147713 hasFunder F4320320994 @default.
- W4313147713 hasFunder F4320334593 @default.
- W4313147713 hasIssue "3" @default.
- W4313147713 hasLocation W43131477131 @default.
- W4313147713 hasOpenAccess W4313147713 @default.
- W4313147713 hasPrimaryLocation W43131477131 @default.
- W4313147713 hasRelatedWork W1978042415 @default.
- W4313147713 hasRelatedWork W2017331178 @default.
- W4313147713 hasRelatedWork W2332694326 @default.
- W4313147713 hasRelatedWork W2530212042 @default.
- W4313147713 hasRelatedWork W2976797620 @default.
- W4313147713 hasRelatedWork W3046926816 @default.
- W4313147713 hasRelatedWork W3083539681 @default.
- W4313147713 hasRelatedWork W3086542228 @default.
- W4313147713 hasRelatedWork W347180939 @default.
- W4313147713 hasRelatedWork W4249089511 @default.
- W4313147713 hasVolume "3" @default.
- W4313147713 isParatext "false" @default.
- W4313147713 isRetracted "false" @default.
- W4313147713 workType "article" @default.