Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313147730> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4313147730 endingPage "11" @default.
- W4313147730 startingPage "1" @default.
- W4313147730 abstract "Multi-modal transportation recommendation plays an important role in navigation applications. It aims to recommend a travel plan with various transport modes, such as bus, metro, taxi, bicycle, and a hybrid. Analysis of real-world large-scale navigation data shows that the correlation between the data can be represented by a graph containing different types of nodes and edges. As an emerging technology, graph neural networks (GNN) have shown powerful capabilities in representing graph data. However, existing solutions based on GNN only consider converting heterogeneous graph data into homogeneous graph data, ignoring the effects of different types of nodes and edges. In addition, those methods usually face the over-smoothing problem, which reduces the accuracy of recommendation. To this end, we propose a multi-modal <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <i>T</i> </b> ransportation recommendation algorithm with <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <i>H</i> </b> eterogeneous graph <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <i>A</i> </b> ttention <bold xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink> <i>N</i> </b> etworks (THAN) based on carefully constructed heterogeneous graphs. We first design a novel graph embedding method to represent the correlation between the origin and the destination, as well as the correlation between origin-destination (OD) pairs and users. Next, a heterogeneous graph from large-scale data is built to describe the relationship between users, OD pairs, and transport modes. Then, we design a hierarchical attention mechanism with residual blocks to generate node embedding in terms of homogeneity and heterogeneity. Finally, a fusion neural layer is designed to fuse embeddings from different views and predict the proper transport mode for users. Extensive experimental results on a large-scale real-world dataset demonstrate that the performance of THAN outperforms five baselines." @default.
- W4313147730 created "2023-01-06" @default.
- W4313147730 creator A5002771011 @default.
- W4313147730 creator A5039225915 @default.
- W4313147730 creator A5048326658 @default.
- W4313147730 creator A5051805730 @default.
- W4313147730 creator A5064014860 @default.
- W4313147730 creator A5076656655 @default.
- W4313147730 creator A5083214612 @default.
- W4313147730 date "2022-01-01" @default.
- W4313147730 modified "2023-10-13" @default.
- W4313147730 title "THAN: Multimodal Transportation Recommendation With Heterogeneous Graph Attention Networks" @default.
- W4313147730 cites W1501856433 @default.
- W4313147730 cites W1936915774 @default.
- W4313147730 cites W1992536119 @default.
- W4313147730 cites W1996528178 @default.
- W4313147730 cites W2017694061 @default.
- W4313147730 cites W2031674781 @default.
- W4313147730 cites W2037403365 @default.
- W4313147730 cites W2104317982 @default.
- W4313147730 cites W2116341502 @default.
- W4313147730 cites W2163812848 @default.
- W4313147730 cites W2290443447 @default.
- W4313147730 cites W2612142670 @default.
- W4313147730 cites W2808561426 @default.
- W4313147730 cites W2904403013 @default.
- W4313147730 cites W2911286998 @default.
- W4313147730 cites W2952785130 @default.
- W4313147730 cites W2953071387 @default.
- W4313147730 cites W2965857891 @default.
- W4313147730 cites W2995662322 @default.
- W4313147730 cites W2997914677 @default.
- W4313147730 cites W3004507689 @default.
- W4313147730 cites W3015302520 @default.
- W4313147730 cites W3034288498 @default.
- W4313147730 cites W3080827759 @default.
- W4313147730 cites W3094541172 @default.
- W4313147730 cites W3138970093 @default.
- W4313147730 cites W3150739942 @default.
- W4313147730 cites W3152249529 @default.
- W4313147730 cites W3155957538 @default.
- W4313147730 cites W3172710079 @default.
- W4313147730 cites W3195102072 @default.
- W4313147730 cites W3213170289 @default.
- W4313147730 cites W4210257598 @default.
- W4313147730 cites W4235755322 @default.
- W4313147730 cites W4281650445 @default.
- W4313147730 doi "https://doi.org/10.1109/tits.2022.3221370" @default.
- W4313147730 hasPublicationYear "2022" @default.
- W4313147730 type Work @default.
- W4313147730 citedByCount "1" @default.
- W4313147730 crossrefType "journal-article" @default.
- W4313147730 hasAuthorship W4313147730A5002771011 @default.
- W4313147730 hasAuthorship W4313147730A5039225915 @default.
- W4313147730 hasAuthorship W4313147730A5048326658 @default.
- W4313147730 hasAuthorship W4313147730A5051805730 @default.
- W4313147730 hasAuthorship W4313147730A5064014860 @default.
- W4313147730 hasAuthorship W4313147730A5076656655 @default.
- W4313147730 hasAuthorship W4313147730A5083214612 @default.
- W4313147730 hasConcept C11413529 @default.
- W4313147730 hasConcept C124101348 @default.
- W4313147730 hasConcept C132525143 @default.
- W4313147730 hasConcept C154945302 @default.
- W4313147730 hasConcept C31972630 @default.
- W4313147730 hasConcept C3770464 @default.
- W4313147730 hasConcept C41008148 @default.
- W4313147730 hasConcept C41608201 @default.
- W4313147730 hasConcept C80444323 @default.
- W4313147730 hasConceptScore W4313147730C11413529 @default.
- W4313147730 hasConceptScore W4313147730C124101348 @default.
- W4313147730 hasConceptScore W4313147730C132525143 @default.
- W4313147730 hasConceptScore W4313147730C154945302 @default.
- W4313147730 hasConceptScore W4313147730C31972630 @default.
- W4313147730 hasConceptScore W4313147730C3770464 @default.
- W4313147730 hasConceptScore W4313147730C41008148 @default.
- W4313147730 hasConceptScore W4313147730C41608201 @default.
- W4313147730 hasConceptScore W4313147730C80444323 @default.
- W4313147730 hasLocation W43131477301 @default.
- W4313147730 hasOpenAccess W4313147730 @default.
- W4313147730 hasPrimaryLocation W43131477301 @default.
- W4313147730 hasRelatedWork W2923818335 @default.
- W4313147730 hasRelatedWork W3035116611 @default.
- W4313147730 hasRelatedWork W3044158376 @default.
- W4313147730 hasRelatedWork W3044354590 @default.
- W4313147730 hasRelatedWork W3149439221 @default.
- W4313147730 hasRelatedWork W4213133066 @default.
- W4313147730 hasRelatedWork W4226361842 @default.
- W4313147730 hasRelatedWork W4287763734 @default.
- W4313147730 hasRelatedWork W4310879833 @default.
- W4313147730 hasRelatedWork W4323362462 @default.
- W4313147730 isParatext "false" @default.
- W4313147730 isRetracted "false" @default.
- W4313147730 workType "article" @default.