Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313149077> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4313149077 endingPage "29" @default.
- W4313149077 startingPage "29" @default.
- W4313149077 abstract "Sustainable agriculture of forest plantations requires the permanent estimation of the amount or volume of wood being produced at any given time, which is difficult in large forest areas if only manual procedures are used in the field. In the present research, multilayer perceptron artificial neural networks (ANNs) were modeled for the spatial estimation of wood volumes in a Eucalyptus sp. plantation located in the state of Mato Grosso do Sul, Central-West region of Brazil. For this purpose, spectral bands, band textures obtained with gray level cooccurrence matrix and vegetation index, which were derived from SPOT 6 digital satellite image, were used as prediction variables. The resulting ANN with the best performance presented an accuracy of 93.32% and a coefficient of determination of 0.9761, with respect to values obtained with field measurements; however, it presented a relative mean square error of 16.32% (RMSE of 7.85 m3/hm2), but the distribution of residuals was not biased, therefore, the model was promising for mapping timber volumes in large areas without overestimating or underestimating the prediction. The constructed network showed greater precision and accuracy when compared to other methods using similar estimation variables, including when compared to neural models using only spectral bands and vegetation indices." @default.
- W4313149077 created "2023-01-06" @default.
- W4313149077 creator A5002660393 @default.
- W4313149077 creator A5003843579 @default.
- W4313149077 creator A5018285759 @default.
- W4313149077 creator A5031665240 @default.
- W4313149077 creator A5063744359 @default.
- W4313149077 creator A5078870258 @default.
- W4313149077 date "2021-03-27" @default.
- W4313149077 modified "2023-10-01" @default.
- W4313149077 title "Volumetric spatiality of wood in forests with artificial neural networks based on satellite imagery" @default.
- W4313149077 doi "https://doi.org/10.24294/th.v4i1.1797" @default.
- W4313149077 hasPublicationYear "2021" @default.
- W4313149077 type Work @default.
- W4313149077 citedByCount "0" @default.
- W4313149077 crossrefType "journal-article" @default.
- W4313149077 hasAuthorship W4313149077A5002660393 @default.
- W4313149077 hasAuthorship W4313149077A5003843579 @default.
- W4313149077 hasAuthorship W4313149077A5018285759 @default.
- W4313149077 hasAuthorship W4313149077A5031665240 @default.
- W4313149077 hasAuthorship W4313149077A5063744359 @default.
- W4313149077 hasAuthorship W4313149077A5078870258 @default.
- W4313149077 hasBestOaLocation W43131490771 @default.
- W4313149077 hasConcept C105795698 @default.
- W4313149077 hasConcept C122383733 @default.
- W4313149077 hasConcept C128990827 @default.
- W4313149077 hasConcept C139945424 @default.
- W4313149077 hasConcept C142724271 @default.
- W4313149077 hasConcept C154945302 @default.
- W4313149077 hasConcept C179717631 @default.
- W4313149077 hasConcept C205649164 @default.
- W4313149077 hasConcept C2776133958 @default.
- W4313149077 hasConcept C2778102629 @default.
- W4313149077 hasConcept C33923547 @default.
- W4313149077 hasConcept C39432304 @default.
- W4313149077 hasConcept C41008148 @default.
- W4313149077 hasConcept C50644808 @default.
- W4313149077 hasConcept C62649853 @default.
- W4313149077 hasConcept C71924100 @default.
- W4313149077 hasConceptScore W4313149077C105795698 @default.
- W4313149077 hasConceptScore W4313149077C122383733 @default.
- W4313149077 hasConceptScore W4313149077C128990827 @default.
- W4313149077 hasConceptScore W4313149077C139945424 @default.
- W4313149077 hasConceptScore W4313149077C142724271 @default.
- W4313149077 hasConceptScore W4313149077C154945302 @default.
- W4313149077 hasConceptScore W4313149077C179717631 @default.
- W4313149077 hasConceptScore W4313149077C205649164 @default.
- W4313149077 hasConceptScore W4313149077C2776133958 @default.
- W4313149077 hasConceptScore W4313149077C2778102629 @default.
- W4313149077 hasConceptScore W4313149077C33923547 @default.
- W4313149077 hasConceptScore W4313149077C39432304 @default.
- W4313149077 hasConceptScore W4313149077C41008148 @default.
- W4313149077 hasConceptScore W4313149077C50644808 @default.
- W4313149077 hasConceptScore W4313149077C62649853 @default.
- W4313149077 hasConceptScore W4313149077C71924100 @default.
- W4313149077 hasIssue "1" @default.
- W4313149077 hasLocation W43131490771 @default.
- W4313149077 hasOpenAccess W4313149077 @default.
- W4313149077 hasPrimaryLocation W43131490771 @default.
- W4313149077 hasRelatedWork W2439109878 @default.
- W4313149077 hasRelatedWork W2750698892 @default.
- W4313149077 hasRelatedWork W2904985375 @default.
- W4313149077 hasRelatedWork W2943894916 @default.
- W4313149077 hasRelatedWork W3016674335 @default.
- W4313149077 hasRelatedWork W3198719406 @default.
- W4313149077 hasRelatedWork W3212676176 @default.
- W4313149077 hasRelatedWork W4286719103 @default.
- W4313149077 hasRelatedWork W4313149077 @default.
- W4313149077 hasRelatedWork W2321516359 @default.
- W4313149077 hasVolume "4" @default.
- W4313149077 isParatext "false" @default.
- W4313149077 isRetracted "false" @default.
- W4313149077 workType "article" @default.