Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313149382> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4313149382 abstract "Learning-based perception systems in robotics often requires large-scale image segmentation annotation. Current approaches rely on human labelers, which can be expensive, or simulation data, which can visually differ from real data. This paper proposes Labels from UltraViolet (LUV), a novel framework that enables rapid, automated, inexpensive, high quality data collection in real. LUV uses transparent, UV-fluorescent paint with programmable UV LEDs to collect paired images of a scene in standard and UV lighting. This makes it possible to autonomously extract segmentation masks and keypoints via color thresholding. We apply LUV to a suite of diverse robot perception tasks: locating fabric keypoints, cable segmentation, and surgical needle detection to evaluate its labeling quality, flexibility, and data collection rate. Results suggest that LUV is 180–2500 times faster than a human labeler across the tasks while retaining accuracy and strong task performance. Code, datasets, visualizations, and supplementary material can be found at https://sites.google.com/berkeley.edu/luv." @default.
- W4313149382 created "2023-01-06" @default.
- W4313149382 creator A5002510411 @default.
- W4313149382 creator A5014844829 @default.
- W4313149382 creator A5039639715 @default.
- W4313149382 creator A5055891784 @default.
- W4313149382 creator A5072427753 @default.
- W4313149382 date "2022-10-23" @default.
- W4313149382 modified "2023-10-16" @default.
- W4313149382 title "All You Need is LUV: Unsupervised Collection of Labeled Images Using UV-Fluorescent Markings" @default.
- W4313149382 cites W1901129140 @default.
- W4313149382 cites W1903029394 @default.
- W4313149382 cites W1974100712 @default.
- W4313149382 cites W2031489346 @default.
- W4313149382 cites W2102584639 @default.
- W4313149382 cites W2115579991 @default.
- W4313149382 cites W2201912979 @default.
- W4313149382 cites W2296294370 @default.
- W4313149382 cites W2340897893 @default.
- W4313149382 cites W2528489519 @default.
- W4313149382 cites W2905225265 @default.
- W4313149382 cites W2910474428 @default.
- W4313149382 cites W2937206389 @default.
- W4313149382 cites W2966885779 @default.
- W4313149382 cites W2974128639 @default.
- W4313149382 cites W3003169307 @default.
- W4313149382 cites W3090004508 @default.
- W4313149382 cites W3129262728 @default.
- W4313149382 cites W3131760074 @default.
- W4313149382 cites W3174282793 @default.
- W4313149382 cites W3205981435 @default.
- W4313149382 cites W3206267548 @default.
- W4313149382 cites W3207427042 @default.
- W4313149382 cites W3207732271 @default.
- W4313149382 cites W4200633290 @default.
- W4313149382 cites W4205603020 @default.
- W4313149382 cites W4226450761 @default.
- W4313149382 doi "https://doi.org/10.1109/iros47612.2022.9981768" @default.
- W4313149382 hasPublicationYear "2022" @default.
- W4313149382 type Work @default.
- W4313149382 citedByCount "0" @default.
- W4313149382 crossrefType "proceedings-article" @default.
- W4313149382 hasAuthorship W4313149382A5002510411 @default.
- W4313149382 hasAuthorship W4313149382A5014844829 @default.
- W4313149382 hasAuthorship W4313149382A5039639715 @default.
- W4313149382 hasAuthorship W4313149382A5055891784 @default.
- W4313149382 hasAuthorship W4313149382A5072427753 @default.
- W4313149382 hasConcept C115961682 @default.
- W4313149382 hasConcept C124504099 @default.
- W4313149382 hasConcept C154945302 @default.
- W4313149382 hasConcept C177264268 @default.
- W4313149382 hasConcept C191178318 @default.
- W4313149382 hasConcept C199360897 @default.
- W4313149382 hasConcept C2776321320 @default.
- W4313149382 hasConcept C2776760102 @default.
- W4313149382 hasConcept C31972630 @default.
- W4313149382 hasConcept C41008148 @default.
- W4313149382 hasConcept C89600930 @default.
- W4313149382 hasConceptScore W4313149382C115961682 @default.
- W4313149382 hasConceptScore W4313149382C124504099 @default.
- W4313149382 hasConceptScore W4313149382C154945302 @default.
- W4313149382 hasConceptScore W4313149382C177264268 @default.
- W4313149382 hasConceptScore W4313149382C191178318 @default.
- W4313149382 hasConceptScore W4313149382C199360897 @default.
- W4313149382 hasConceptScore W4313149382C2776321320 @default.
- W4313149382 hasConceptScore W4313149382C2776760102 @default.
- W4313149382 hasConceptScore W4313149382C31972630 @default.
- W4313149382 hasConceptScore W4313149382C41008148 @default.
- W4313149382 hasConceptScore W4313149382C89600930 @default.
- W4313149382 hasLocation W43131493821 @default.
- W4313149382 hasOpenAccess W4313149382 @default.
- W4313149382 hasPrimaryLocation W43131493821 @default.
- W4313149382 hasRelatedWork W1669643531 @default.
- W4313149382 hasRelatedWork W2005437358 @default.
- W4313149382 hasRelatedWork W2008656436 @default.
- W4313149382 hasRelatedWork W2009028679 @default.
- W4313149382 hasRelatedWork W2055210187 @default.
- W4313149382 hasRelatedWork W2347731544 @default.
- W4313149382 hasRelatedWork W2411367154 @default.
- W4313149382 hasRelatedWork W2517104666 @default.
- W4313149382 hasRelatedWork W2536634271 @default.
- W4313149382 hasRelatedWork W2900363363 @default.
- W4313149382 isParatext "false" @default.
- W4313149382 isRetracted "false" @default.
- W4313149382 workType "article" @default.