Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313149461> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4313149461 endingPage "81" @default.
- W4313149461 startingPage "75" @default.
- W4313149461 abstract "Textile defect detection and classification is an important part of the textile production process, however, to detect accurately and efficiently is still difficult. In this study, we present an effective formulation for textile defect detection. Unlike traditional textile detecting methods, a conventional neural network (CNN) support vector machine (SVM) is designed to extract the depth features of textile images and to classify defects. The effectiveness of textile feature extraction is improved by optimizing Alexnet to obtain a CNN with better feature extraction and less computation. Textile defect classification is more effective using SVM instead of Softmax. Experimental results demonstrated that the improved Alexnet-SVM gave 99% accuracy in defect classification using the TILDA database. This accuracy was 5% greater than Alexnet and GoogleNet." @default.
- W4313149461 created "2023-01-06" @default.
- W4313149461 creator A5009640986 @default.
- W4313149461 creator A5021687717 @default.
- W4313149461 creator A5037442960 @default.
- W4313149461 creator A5040469723 @default.
- W4313149461 creator A5063746450 @default.
- W4313149461 creator A5084210044 @default.
- W4313149461 date "2021-09-01" @default.
- W4313149461 modified "2023-10-16" @default.
- W4313149461 title "Textile Defect Classification Based on Convolutional Neural Network and SVM" @default.
- W4313149461 cites W1852849178 @default.
- W4313149461 cites W1963676737 @default.
- W4313149461 cites W1976606301 @default.
- W4313149461 cites W2022320998 @default.
- W4313149461 cites W2032454107 @default.
- W4313149461 cites W2047044066 @default.
- W4313149461 cites W2064747657 @default.
- W4313149461 cites W2088398118 @default.
- W4313149461 cites W2097117768 @default.
- W4313149461 cites W2121166252 @default.
- W4313149461 cites W2129238487 @default.
- W4313149461 cites W2155893237 @default.
- W4313149461 cites W2168471032 @default.
- W4313149461 cites W2568538594 @default.
- W4313149461 cites W2890565216 @default.
- W4313149461 cites W2890747436 @default.
- W4313149461 cites W2900761535 @default.
- W4313149461 cites W2904219758 @default.
- W4313149461 cites W2921163360 @default.
- W4313149461 doi "https://doi.org/10.14504/ajr.8.s1.10" @default.
- W4313149461 hasPublicationYear "2021" @default.
- W4313149461 type Work @default.
- W4313149461 citedByCount "1" @default.
- W4313149461 countsByYear W43131494612022 @default.
- W4313149461 crossrefType "journal-article" @default.
- W4313149461 hasAuthorship W4313149461A5009640986 @default.
- W4313149461 hasAuthorship W4313149461A5021687717 @default.
- W4313149461 hasAuthorship W4313149461A5037442960 @default.
- W4313149461 hasAuthorship W4313149461A5040469723 @default.
- W4313149461 hasAuthorship W4313149461A5063746450 @default.
- W4313149461 hasAuthorship W4313149461A5084210044 @default.
- W4313149461 hasConcept C12267149 @default.
- W4313149461 hasConcept C138885662 @default.
- W4313149461 hasConcept C153180895 @default.
- W4313149461 hasConcept C154945302 @default.
- W4313149461 hasConcept C159985019 @default.
- W4313149461 hasConcept C164767435 @default.
- W4313149461 hasConcept C188441871 @default.
- W4313149461 hasConcept C192562407 @default.
- W4313149461 hasConcept C2776401178 @default.
- W4313149461 hasConcept C41008148 @default.
- W4313149461 hasConcept C41895202 @default.
- W4313149461 hasConcept C50644808 @default.
- W4313149461 hasConcept C52622490 @default.
- W4313149461 hasConcept C81363708 @default.
- W4313149461 hasConceptScore W4313149461C12267149 @default.
- W4313149461 hasConceptScore W4313149461C138885662 @default.
- W4313149461 hasConceptScore W4313149461C153180895 @default.
- W4313149461 hasConceptScore W4313149461C154945302 @default.
- W4313149461 hasConceptScore W4313149461C159985019 @default.
- W4313149461 hasConceptScore W4313149461C164767435 @default.
- W4313149461 hasConceptScore W4313149461C188441871 @default.
- W4313149461 hasConceptScore W4313149461C192562407 @default.
- W4313149461 hasConceptScore W4313149461C2776401178 @default.
- W4313149461 hasConceptScore W4313149461C41008148 @default.
- W4313149461 hasConceptScore W4313149461C41895202 @default.
- W4313149461 hasConceptScore W4313149461C50644808 @default.
- W4313149461 hasConceptScore W4313149461C52622490 @default.
- W4313149461 hasConceptScore W4313149461C81363708 @default.
- W4313149461 hasIssue "1_suppl" @default.
- W4313149461 hasLocation W43131494611 @default.
- W4313149461 hasOpenAccess W4313149461 @default.
- W4313149461 hasPrimaryLocation W43131494611 @default.
- W4313149461 hasRelatedWork W2406522397 @default.
- W4313149461 hasRelatedWork W2613736958 @default.
- W4313149461 hasRelatedWork W2743258233 @default.
- W4313149461 hasRelatedWork W2758063741 @default.
- W4313149461 hasRelatedWork W2771907641 @default.
- W4313149461 hasRelatedWork W2915159483 @default.
- W4313149461 hasRelatedWork W2977314777 @default.
- W4313149461 hasRelatedWork W3214058074 @default.
- W4313149461 hasRelatedWork W4300003422 @default.
- W4313149461 hasRelatedWork W4313149461 @default.
- W4313149461 hasVolume "8" @default.
- W4313149461 isParatext "false" @default.
- W4313149461 isRetracted "false" @default.
- W4313149461 workType "article" @default.