Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313149788> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4313149788 abstract "The field of affective computing has gained significant attention from researchers in the last decade due to the wide variety of applications that can benefit from the technology. Nonetheless, recognizing spontaneous and subtle emotions remains a challenging problem for computers. In this work, we present a model for automatically recognizing human emotions using audio and video features. As opposed to most of the recent work that employs Recurrent Neural Network (RNN) models for emotion recognition from audio and video, we applied a Temporal Convolutional Network (TCN) to model the time-series information. To compare the RNN- and TCN-based networks, we configured the hyperparameters of the models using Gaussian processes and Bayesian analysis to achieve a fair evaluation. Our experimental results show that our TCN-based model outperforms all tested RNN-based models, yielding a concordance correlation coefficient of 0.7440 (vs. 0.7269) on valence and 0.7557 (vs. 0.7255) on arousal for the SEWA dataset." @default.
- W4313149788 created "2023-01-06" @default.
- W4313149788 creator A5050648904 @default.
- W4313149788 creator A5052701477 @default.
- W4313149788 creator A5077457674 @default.
- W4313149788 date "2022-07-18" @default.
- W4313149788 modified "2023-09-23" @default.
- W4313149788 title "Multimodal Affect Recognition Using Temporal Convolutional Neural Networks" @default.
- W4313149788 cites W1539811621 @default.
- W4313149788 cites W1785074626 @default.
- W4313149788 cites W1964757081 @default.
- W4313149788 cites W2012237712 @default.
- W4313149788 cites W2021103401 @default.
- W4313149788 cites W2021913835 @default.
- W4313149788 cites W2025427990 @default.
- W4313149788 cites W2025682077 @default.
- W4313149788 cites W2069682406 @default.
- W4313149788 cites W2069889204 @default.
- W4313149788 cites W2124737236 @default.
- W4313149788 cites W2130162821 @default.
- W4313149788 cites W2133028763 @default.
- W4313149788 cites W2144499799 @default.
- W4313149788 cites W2163312093 @default.
- W4313149788 cites W2166259822 @default.
- W4313149788 cites W2314395941 @default.
- W4313149788 cites W2325939864 @default.
- W4313149788 cites W2346454595 @default.
- W4313149788 cites W2523856713 @default.
- W4313149788 cites W2526050071 @default.
- W4313149788 cites W2531466839 @default.
- W4313149788 cites W2531648894 @default.
- W4313149788 cites W2610961739 @default.
- W4313149788 cites W2751214333 @default.
- W4313149788 cites W2765291577 @default.
- W4313149788 cites W2766925079 @default.
- W4313149788 cites W2798536775 @default.
- W4313149788 cites W2896480997 @default.
- W4313149788 cites W2897337310 @default.
- W4313149788 cites W2897444637 @default.
- W4313149788 cites W2963446712 @default.
- W4313149788 cites W2981677410 @default.
- W4313149788 cites W3094918372 @default.
- W4313149788 cites W3102246728 @default.
- W4313149788 cites W3114806760 @default.
- W4313149788 cites W3206776536 @default.
- W4313149788 doi "https://doi.org/10.1109/ijcnn55064.2022.9892145" @default.
- W4313149788 hasPublicationYear "2022" @default.
- W4313149788 type Work @default.
- W4313149788 citedByCount "0" @default.
- W4313149788 crossrefType "proceedings-article" @default.
- W4313149788 hasAuthorship W4313149788A5050648904 @default.
- W4313149788 hasAuthorship W4313149788A5052701477 @default.
- W4313149788 hasAuthorship W4313149788A5077457674 @default.
- W4313149788 hasConcept C119857082 @default.
- W4313149788 hasConcept C147168706 @default.
- W4313149788 hasConcept C153180895 @default.
- W4313149788 hasConcept C154945302 @default.
- W4313149788 hasConcept C28490314 @default.
- W4313149788 hasConcept C41008148 @default.
- W4313149788 hasConcept C50644808 @default.
- W4313149788 hasConcept C81363708 @default.
- W4313149788 hasConcept C8642999 @default.
- W4313149788 hasConceptScore W4313149788C119857082 @default.
- W4313149788 hasConceptScore W4313149788C147168706 @default.
- W4313149788 hasConceptScore W4313149788C153180895 @default.
- W4313149788 hasConceptScore W4313149788C154945302 @default.
- W4313149788 hasConceptScore W4313149788C28490314 @default.
- W4313149788 hasConceptScore W4313149788C41008148 @default.
- W4313149788 hasConceptScore W4313149788C50644808 @default.
- W4313149788 hasConceptScore W4313149788C81363708 @default.
- W4313149788 hasConceptScore W4313149788C8642999 @default.
- W4313149788 hasLocation W43131497881 @default.
- W4313149788 hasOpenAccess W4313149788 @default.
- W4313149788 hasPrimaryLocation W43131497881 @default.
- W4313149788 hasRelatedWork W2175746458 @default.
- W4313149788 hasRelatedWork W2732542196 @default.
- W4313149788 hasRelatedWork W3027997911 @default.
- W4313149788 hasRelatedWork W3093612317 @default.
- W4313149788 hasRelatedWork W4210794429 @default.
- W4313149788 hasRelatedWork W4280535922 @default.
- W4313149788 hasRelatedWork W4287776258 @default.
- W4313149788 hasRelatedWork W4295309597 @default.
- W4313149788 hasRelatedWork W4309113015 @default.
- W4313149788 hasRelatedWork W4313854490 @default.
- W4313149788 isParatext "false" @default.
- W4313149788 isRetracted "false" @default.
- W4313149788 workType "article" @default.