Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313151913> ?p ?o ?g. }
- W4313151913 endingPage "17" @default.
- W4313151913 startingPage "1" @default.
- W4313151913 abstract "Hyperspectral image mixed denoising is a challenging task in the fields of remote sensing, environmental monitoring, mineral exploration, etc. A crucial difficulty is to acquire clean restoration from hyperspectral image (HSI) that encounters Gaussian noise, impulse noise, strip noise and deadlines. In the previous works, combining global information and nonlocal information is a popular way to learn the comprehensive characteristics of the clean HSI. However, the advantages of 2D spatial structure similarity and spectral low-rankness may not be fully exploited at the same time in global prior learning. The iterative update between global restoration and nonlocal restoration may cause high time consumption and certain loss of information. To address these issues, we propose a three-stage mixed denoising model based on novel hybrid low-rank tensor approximation and global-guided-nonlocal prior mechanism (HLTA-GN). Firstly, to learn a good global prior, hybrid low-rank tensor approximation incorporated with a useful nonconvex tensor rank estimation is presented to balance 2D spatial similarity and spectral low-rankness. Secondly, to learn a high-quality nonlocal prior, global-guided-nonlocal prior mechanism is proposed to help nonlocal restoration suppress the residual noise. At the same time, a regularized sequential low-rank tensor approximation is proposed to enhance the robustness to noisy patch groups. Thirdly, a weighted fusion on global prior and nonlocal prior helps to further balance global denoising and patch processing. An efficient learning algorithm is provided to solve HLTA-GN. Abundant experiments are conducted on various HSIs with several scenarios. The experimental results demonstrate the superiority of HLTA-GN." @default.
- W4313151913 created "2023-01-06" @default.
- W4313151913 creator A5033023635 @default.
- W4313151913 creator A5080544871 @default.
- W4313151913 creator A5091625871 @default.
- W4313151913 date "2022-01-01" @default.
- W4313151913 modified "2023-10-16" @default.
- W4313151913 title "Novel Hybrid Low-Rank Tensor Approximation for Hyperspectral Image Mixed Denoising Based on Global-Guided-Nonlocal Prior Mechanism" @default.
- W4313151913 cites W1964905295 @default.
- W4313151913 cites W1974438823 @default.
- W4313151913 cites W1985242206 @default.
- W4313151913 cites W2024165284 @default.
- W4313151913 cites W2039596145 @default.
- W4313151913 cites W2048695508 @default.
- W4313151913 cites W2055913665 @default.
- W4313151913 cites W2056370875 @default.
- W4313151913 cites W2082590963 @default.
- W4313151913 cites W2095906131 @default.
- W4313151913 cites W2149414429 @default.
- W4313151913 cites W2153663612 @default.
- W4313151913 cites W2162276208 @default.
- W4313151913 cites W2212207508 @default.
- W4313151913 cites W2289756263 @default.
- W4313151913 cites W2436131245 @default.
- W4313151913 cites W2542500166 @default.
- W4313151913 cites W2585357012 @default.
- W4313151913 cites W2615331742 @default.
- W4313151913 cites W2624915162 @default.
- W4313151913 cites W2735711969 @default.
- W4313151913 cites W2743606449 @default.
- W4313151913 cites W2747865121 @default.
- W4313151913 cites W2765197269 @default.
- W4313151913 cites W2766159201 @default.
- W4313151913 cites W2771296580 @default.
- W4313151913 cites W2790888198 @default.
- W4313151913 cites W2793237446 @default.
- W4313151913 cites W2793784710 @default.
- W4313151913 cites W2804744787 @default.
- W4313151913 cites W2805465265 @default.
- W4313151913 cites W2806155925 @default.
- W4313151913 cites W2910457605 @default.
- W4313151913 cites W2912958304 @default.
- W4313151913 cites W2914736033 @default.
- W4313151913 cites W2919868964 @default.
- W4313151913 cites W2941769495 @default.
- W4313151913 cites W2944375193 @default.
- W4313151913 cites W2963328634 @default.
- W4313151913 cites W2964146769 @default.
- W4313151913 cites W2964179170 @default.
- W4313151913 cites W2970683532 @default.
- W4313151913 cites W2972301798 @default.
- W4313151913 cites W2980054274 @default.
- W4313151913 cites W2982007765 @default.
- W4313151913 cites W2986829670 @default.
- W4313151913 cites W2987314729 @default.
- W4313151913 cites W2997195386 @default.
- W4313151913 cites W2998841120 @default.
- W4313151913 cites W3021083191 @default.
- W4313151913 cites W3042671644 @default.
- W4313151913 cites W3047993974 @default.
- W4313151913 cites W3080329286 @default.
- W4313151913 cites W3092426727 @default.
- W4313151913 cites W3120342934 @default.
- W4313151913 cites W3134490757 @default.
- W4313151913 cites W3148151826 @default.
- W4313151913 cites W3159203577 @default.
- W4313151913 cites W3173675588 @default.
- W4313151913 cites W3216721694 @default.
- W4313151913 cites W4210330613 @default.
- W4313151913 cites W4280629117 @default.
- W4313151913 cites W4280640125 @default.
- W4313151913 doi "https://doi.org/10.1109/tgrs.2022.3217051" @default.
- W4313151913 hasPublicationYear "2022" @default.
- W4313151913 type Work @default.
- W4313151913 citedByCount "2" @default.
- W4313151913 countsByYear W43131519132022 @default.
- W4313151913 countsByYear W43131519132023 @default.
- W4313151913 crossrefType "journal-article" @default.
- W4313151913 hasAuthorship W4313151913A5033023635 @default.
- W4313151913 hasAuthorship W4313151913A5080544871 @default.
- W4313151913 hasAuthorship W4313151913A5091625871 @default.
- W4313151913 hasConcept C104317684 @default.
- W4313151913 hasConcept C106430172 @default.
- W4313151913 hasConcept C11413529 @default.
- W4313151913 hasConcept C115961682 @default.
- W4313151913 hasConcept C126255220 @default.
- W4313151913 hasConcept C127372701 @default.
- W4313151913 hasConcept C153180895 @default.
- W4313151913 hasConcept C154945302 @default.
- W4313151913 hasConcept C155281189 @default.
- W4313151913 hasConcept C159078339 @default.
- W4313151913 hasConcept C160633673 @default.
- W4313151913 hasConcept C163294075 @default.
- W4313151913 hasConcept C185592680 @default.
- W4313151913 hasConcept C202444582 @default.
- W4313151913 hasConcept C33923547 @default.
- W4313151913 hasConcept C41008148 @default.
- W4313151913 hasConcept C4199805 @default.