Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313152877> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W4313152877 abstract "Incremental learning is a promising algorithm for creating an adaptive network intrusion detection system (IDS) model. In contrast with batch learning models, incremental learning models can be retrained easily when new network intrusion data emerge. Moreover, some incremental learning models, such as the Hoeffding Tree model, can be retrained only using latest training data. This advantage is appealing because computer networks produce enormous amounts of data every day. Using incremental learning models for detecting the ever-growing network intrusions can save computational resources while preserving the performance of the models. However, network data suffer from the imbalanced data problem where the data distribution of the classes in the training data is often severely disproportional. This imbalanced data problem is affecting the performance of incremental learning algorithms. To mitigate this problem, we propose an incremental learning algorithm for network IDSs that can learn from imbalanced data. Our proposed method is an ensemble incremental learning algorithm composed of the Hoeffding Tree, incremental Adaptive Boosting (AdaBoost), and Hard Sampling algorithms. The experimental results show that our proposed model has superior performance compared to the other incremental learning models tested in this study. Moreover, our proposed method increases the robustness of the incremental learning model against the imbalanced data problem." @default.
- W4313152877 created "2023-01-06" @default.
- W4313152877 creator A5010583900 @default.
- W4313152877 creator A5022775289 @default.
- W4313152877 date "2022-07-29" @default.
- W4313152877 modified "2023-10-14" @default.
- W4313152877 title "An Incremental Learning Algorithm on Imbalanced Data for Network Intrusion Detection Systems" @default.
- W4313152877 cites W2016159616 @default.
- W4313152877 cites W2065523140 @default.
- W4313152877 cites W2068714596 @default.
- W4313152877 cites W2103753221 @default.
- W4313152877 cites W2118978333 @default.
- W4313152877 cites W2150755264 @default.
- W4313152877 cites W2531967557 @default.
- W4313152877 cites W2591712613 @default.
- W4313152877 cites W2735171663 @default.
- W4313152877 cites W2789828921 @default.
- W4313152877 cites W2798336999 @default.
- W4313152877 cites W2899653275 @default.
- W4313152877 cites W2946445608 @default.
- W4313152877 cites W2958285686 @default.
- W4313152877 cites W3033213260 @default.
- W4313152877 cites W3039673966 @default.
- W4313152877 cites W3083683925 @default.
- W4313152877 cites W3148099389 @default.
- W4313152877 cites W3200164508 @default.
- W4313152877 doi "https://doi.org/10.1145/3556223.3556252" @default.
- W4313152877 hasPublicationYear "2022" @default.
- W4313152877 type Work @default.
- W4313152877 citedByCount "2" @default.
- W4313152877 countsByYear W43131528772022 @default.
- W4313152877 crossrefType "proceedings-article" @default.
- W4313152877 hasAuthorship W4313152877A5010583900 @default.
- W4313152877 hasAuthorship W4313152877A5022775289 @default.
- W4313152877 hasConcept C104317684 @default.
- W4313152877 hasConcept C119857082 @default.
- W4313152877 hasConcept C124101348 @default.
- W4313152877 hasConcept C141404830 @default.
- W4313152877 hasConcept C154945302 @default.
- W4313152877 hasConcept C184497298 @default.
- W4313152877 hasConcept C185592680 @default.
- W4313152877 hasConcept C2780735816 @default.
- W4313152877 hasConcept C35525427 @default.
- W4313152877 hasConcept C41008148 @default.
- W4313152877 hasConcept C45942800 @default.
- W4313152877 hasConcept C46686674 @default.
- W4313152877 hasConcept C55493867 @default.
- W4313152877 hasConcept C63479239 @default.
- W4313152877 hasConcept C8880873 @default.
- W4313152877 hasConcept C95623464 @default.
- W4313152877 hasConceptScore W4313152877C104317684 @default.
- W4313152877 hasConceptScore W4313152877C119857082 @default.
- W4313152877 hasConceptScore W4313152877C124101348 @default.
- W4313152877 hasConceptScore W4313152877C141404830 @default.
- W4313152877 hasConceptScore W4313152877C154945302 @default.
- W4313152877 hasConceptScore W4313152877C184497298 @default.
- W4313152877 hasConceptScore W4313152877C185592680 @default.
- W4313152877 hasConceptScore W4313152877C2780735816 @default.
- W4313152877 hasConceptScore W4313152877C35525427 @default.
- W4313152877 hasConceptScore W4313152877C41008148 @default.
- W4313152877 hasConceptScore W4313152877C45942800 @default.
- W4313152877 hasConceptScore W4313152877C46686674 @default.
- W4313152877 hasConceptScore W4313152877C55493867 @default.
- W4313152877 hasConceptScore W4313152877C63479239 @default.
- W4313152877 hasConceptScore W4313152877C8880873 @default.
- W4313152877 hasConceptScore W4313152877C95623464 @default.
- W4313152877 hasLocation W43131528771 @default.
- W4313152877 hasOpenAccess W4313152877 @default.
- W4313152877 hasPrimaryLocation W43131528771 @default.
- W4313152877 hasRelatedWork W1987859285 @default.
- W4313152877 hasRelatedWork W1996541855 @default.
- W4313152877 hasRelatedWork W2097856925 @default.
- W4313152877 hasRelatedWork W2955385375 @default.
- W4313152877 hasRelatedWork W2971104761 @default.
- W4313152877 hasRelatedWork W3206510278 @default.
- W4313152877 hasRelatedWork W4285046548 @default.
- W4313152877 hasRelatedWork W4285213578 @default.
- W4313152877 hasRelatedWork W4296079469 @default.
- W4313152877 hasRelatedWork W4382315444 @default.
- W4313152877 isParatext "false" @default.
- W4313152877 isRetracted "false" @default.
- W4313152877 workType "article" @default.