Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313153943> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4313153943 abstract "Uterine cancer, also known as endometrial cancer, is a form of cancer that affects the female reproductive system. Women over the age of 50 are more likely to get uterine cancer. At this current time, there are two methods that the physician or health care provider tends to use to diagnose cancer, which are ultrasound technique and endometrial biopsy. If the patient is suspected of having cancer, ultrasound is first used to measure the length of the endometrial lining. Then, if the lining is greater than 4mm, an endometrial biopsy is performed. At this stage, small tubular instruments are used to extract the cells from the human body. The cells are then sent to a pathologist to determine the cell type. Using the pathological image analysis system, time is taken, where human factors are the main issues in using the system. In cancer treatment, both aspects of time and human error are important because both issues can lead to death. Also, the cell nucleus is key since the damaged cells do not tend to produce the circular cell nucleus. Therefore, the pathologist usually requires more time to identify whether it is a Low-Grade Squamous Intraepithelial Lesion (LSIL) or a High-Grade Squamous Intraepithelial Lesion (HSIL). Based on the limitations that occur, the paper aims to automate classification techniques based on the nucleus roundness value. Image processing via machine learning is an alternative method that can provide high accuracy with a short processing time. The system used multiple image algorithms to determine the circularity of the cell nucleus and provide additional data to determine the cell type. Based on calculations, detection accuracy was achieved up to 100%." @default.
- W4313153943 created "2023-01-06" @default.
- W4313153943 creator A5009213904 @default.
- W4313153943 creator A5015325813 @default.
- W4313153943 creator A5023371059 @default.
- W4313153943 creator A5026102955 @default.
- W4313153943 creator A5049500386 @default.
- W4313153943 creator A5082504511 @default.
- W4313153943 date "2022-05-31" @default.
- W4313153943 modified "2023-09-28" @default.
- W4313153943 title "Stages Classification on Endometrial Cell Images Using Roundness Shape Analysis" @default.
- W4313153943 cites W1965940698 @default.
- W4313153943 cites W2012323375 @default.
- W4313153943 cites W2068698433 @default.
- W4313153943 cites W2093956721 @default.
- W4313153943 cites W2111467397 @default.
- W4313153943 cites W2581514666 @default.
- W4313153943 cites W2795054521 @default.
- W4313153943 cites W2899502636 @default.
- W4313153943 cites W2922168348 @default.
- W4313153943 cites W2952553937 @default.
- W4313153943 cites W2965667001 @default.
- W4313153943 cites W2971599365 @default.
- W4313153943 cites W2976674432 @default.
- W4313153943 cites W3031317793 @default.
- W4313153943 cites W3037686808 @default.
- W4313153943 cites W3093854658 @default.
- W4313153943 cites W3100398151 @default.
- W4313153943 cites W3159745793 @default.
- W4313153943 cites W4220690926 @default.
- W4313153943 doi "https://doi.org/10.1109/iiceta54559.2022.9888380" @default.
- W4313153943 hasPublicationYear "2022" @default.
- W4313153943 type Work @default.
- W4313153943 citedByCount "1" @default.
- W4313153943 countsByYear W43131539432022 @default.
- W4313153943 crossrefType "proceedings-article" @default.
- W4313153943 hasAuthorship W4313153943A5009213904 @default.
- W4313153943 hasAuthorship W4313153943A5015325813 @default.
- W4313153943 hasAuthorship W4313153943A5023371059 @default.
- W4313153943 hasAuthorship W4313153943A5026102955 @default.
- W4313153943 hasAuthorship W4313153943A5049500386 @default.
- W4313153943 hasAuthorship W4313153943A5082504511 @default.
- W4313153943 hasConcept C121608353 @default.
- W4313153943 hasConcept C126322002 @default.
- W4313153943 hasConcept C14190554 @default.
- W4313153943 hasConcept C142724271 @default.
- W4313153943 hasConcept C2524010 @default.
- W4313153943 hasConcept C2775934546 @default.
- W4313153943 hasConcept C2777088508 @default.
- W4313153943 hasConcept C2781156865 @default.
- W4313153943 hasConcept C33923547 @default.
- W4313153943 hasConcept C71924100 @default.
- W4313153943 hasConceptScore W4313153943C121608353 @default.
- W4313153943 hasConceptScore W4313153943C126322002 @default.
- W4313153943 hasConceptScore W4313153943C14190554 @default.
- W4313153943 hasConceptScore W4313153943C142724271 @default.
- W4313153943 hasConceptScore W4313153943C2524010 @default.
- W4313153943 hasConceptScore W4313153943C2775934546 @default.
- W4313153943 hasConceptScore W4313153943C2777088508 @default.
- W4313153943 hasConceptScore W4313153943C2781156865 @default.
- W4313153943 hasConceptScore W4313153943C33923547 @default.
- W4313153943 hasConceptScore W4313153943C71924100 @default.
- W4313153943 hasLocation W43131539431 @default.
- W4313153943 hasOpenAccess W4313153943 @default.
- W4313153943 hasPrimaryLocation W43131539431 @default.
- W4313153943 hasRelatedWork W2091020218 @default.
- W4313153943 hasRelatedWork W2152093795 @default.
- W4313153943 hasRelatedWork W2349096397 @default.
- W4313153943 hasRelatedWork W2402119494 @default.
- W4313153943 hasRelatedWork W2734526255 @default.
- W4313153943 hasRelatedWork W2891666204 @default.
- W4313153943 hasRelatedWork W3144668473 @default.
- W4313153943 hasRelatedWork W3197047135 @default.
- W4313153943 hasRelatedWork W4238850057 @default.
- W4313153943 hasRelatedWork W1929462032 @default.
- W4313153943 isParatext "false" @default.
- W4313153943 isRetracted "false" @default.
- W4313153943 workType "article" @default.