Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313154232> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4313154232 endingPage "112075" @default.
- W4313154232 startingPage "112066" @default.
- W4313154232 abstract "The agricultural production is greatly affected by various plant diseases. Classifying the severity of crop diseases is the requirement for formulating disease prevention and control strategies. However, the differences between different severity of the same crop disease are very tiny. It increases the difficulty of correct crop disease recognition. For example, at the early stage of the disease, the lesions on the leaves are not obvious. And it is very difficult to extract the features of the lesions. However, these very small color and texture differences of the lesions are the key patterns to distinguish different kinds of diseases of the same species. In order to achieve better performance in the fine-grained classification of the crop diseases, a modified light-weight convolution neural network was proposed. Multi-scale convolution kernel and coordinate attention mechanism are introduced in SqueezeNext to extract the features of the lesions accurately. The performance of the proposed model was evaluated using the AI challenger 2018 plant disease recognition dataset, and the recognition accuracy can reach 91.94%, which is 3.02% point higher than the original SqueezeNext model. In order to verify the effectiveness of the proposed model, comparative experiments were carried out using ReseNet50, Xception and mobilenetv2. The experimental results showed that the accuracy of the proposed method was slightly better than Xception, while the model size is only 2.83 MB, which is only 3.45% of Xception. The proposed method balances the performance and efficiency very well. Thus, it is suitable for deployment on mobile terminals and other embedded resource-constrained devices, which help to promote the popularization of smart agriculture application." @default.
- W4313154232 created "2023-01-06" @default.
- W4313154232 creator A5015478034 @default.
- W4313154232 creator A5029156210 @default.
- W4313154232 creator A5045644550 @default.
- W4313154232 date "2022-01-01" @default.
- W4313154232 modified "2023-10-17" @default.
- W4313154232 title "Crop Disease Recognition Based on Modified Light-Weight CNN With Attention Mechanism" @default.
- W4313154232 doi "https://doi.org/10.1109/access.2022.3216285" @default.
- W4313154232 hasPublicationYear "2022" @default.
- W4313154232 type Work @default.
- W4313154232 citedByCount "7" @default.
- W4313154232 countsByYear W43131542322023 @default.
- W4313154232 crossrefType "journal-article" @default.
- W4313154232 hasAuthorship W4313154232A5015478034 @default.
- W4313154232 hasAuthorship W4313154232A5029156210 @default.
- W4313154232 hasAuthorship W4313154232A5045644550 @default.
- W4313154232 hasBestOaLocation W43131542321 @default.
- W4313154232 hasConcept C111472728 @default.
- W4313154232 hasConcept C114614502 @default.
- W4313154232 hasConcept C137580998 @default.
- W4313154232 hasConcept C138885662 @default.
- W4313154232 hasConcept C150903083 @default.
- W4313154232 hasConcept C153180895 @default.
- W4313154232 hasConcept C154945302 @default.
- W4313154232 hasConcept C3019235130 @default.
- W4313154232 hasConcept C33923547 @default.
- W4313154232 hasConcept C41008148 @default.
- W4313154232 hasConcept C45347329 @default.
- W4313154232 hasConcept C50644808 @default.
- W4313154232 hasConcept C6557445 @default.
- W4313154232 hasConcept C74193536 @default.
- W4313154232 hasConcept C81363708 @default.
- W4313154232 hasConcept C86803240 @default.
- W4313154232 hasConcept C89611455 @default.
- W4313154232 hasConceptScore W4313154232C111472728 @default.
- W4313154232 hasConceptScore W4313154232C114614502 @default.
- W4313154232 hasConceptScore W4313154232C137580998 @default.
- W4313154232 hasConceptScore W4313154232C138885662 @default.
- W4313154232 hasConceptScore W4313154232C150903083 @default.
- W4313154232 hasConceptScore W4313154232C153180895 @default.
- W4313154232 hasConceptScore W4313154232C154945302 @default.
- W4313154232 hasConceptScore W4313154232C3019235130 @default.
- W4313154232 hasConceptScore W4313154232C33923547 @default.
- W4313154232 hasConceptScore W4313154232C41008148 @default.
- W4313154232 hasConceptScore W4313154232C45347329 @default.
- W4313154232 hasConceptScore W4313154232C50644808 @default.
- W4313154232 hasConceptScore W4313154232C6557445 @default.
- W4313154232 hasConceptScore W4313154232C74193536 @default.
- W4313154232 hasConceptScore W4313154232C81363708 @default.
- W4313154232 hasConceptScore W4313154232C86803240 @default.
- W4313154232 hasConceptScore W4313154232C89611455 @default.
- W4313154232 hasFunder F4320321001 @default.
- W4313154232 hasFunder F4320336619 @default.
- W4313154232 hasLocation W43131542321 @default.
- W4313154232 hasOpenAccess W4313154232 @default.
- W4313154232 hasPrimaryLocation W43131542321 @default.
- W4313154232 hasRelatedWork W2110459882 @default.
- W4313154232 hasRelatedWork W2766634277 @default.
- W4313154232 hasRelatedWork W2767651786 @default.
- W4313154232 hasRelatedWork W2912288872 @default.
- W4313154232 hasRelatedWork W2949189996 @default.
- W4313154232 hasRelatedWork W2959500052 @default.
- W4313154232 hasRelatedWork W3006085271 @default.
- W4313154232 hasRelatedWork W3200060857 @default.
- W4313154232 hasRelatedWork W4312417841 @default.
- W4313154232 hasRelatedWork W564581980 @default.
- W4313154232 hasVolume "10" @default.
- W4313154232 isParatext "false" @default.
- W4313154232 isRetracted "false" @default.
- W4313154232 workType "article" @default.