Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313165002> ?p ?o ?g. }
- W4313165002 endingPage "777" @default.
- W4313165002 startingPage "764" @default.
- W4313165002 abstract "The number of traffic accidents has been continuously increasing in recent years worldwide. Many accidents are caused by distracted drivers, who take their attention away from driving. Motivated by the success of Convolutional Neural Networks (CNNs) in computer vision, many researchers developed CNN-based algorithms to recognize distracted driving from a dashcam and warn the driver against unsafe behaviors. However, current models have too many parameters, which is unfeasible for vehicle-mounted computing. This work proposes a novel knowledge-distillation-based framework to solve this problem. The proposed framework first constructs a high-performance teacher network by progressively strengthening the robustness to illumination changes from shallow to deep layers of a CNN. Then, the teacher network is used to guide the architecture searching process of a student network through knowledge distillation. After that, we use the teacher network again to transfer knowledge to the student network by knowledge distillation. Experimental results on the Statefarm Distracted Driver Detection Dataset and AUC Distracted Driver Dataset show that the proposed approach is highly effective for recognizing distracted driving behaviors from photos: (i) the teacher network’s accuracy surpasses the previous best accuracy; (ii) the student network achieves very high accuracy with only 0.42M parameters (around 55% of the previous most lightweight model). Furthermore, the student network architecture can be extended to a spatial-temporal 3D CNN for recognizing distracted driving from video clips. The 3D student network largely surpasses the previous best accuracy with only 2.03M parameters on the Drive&Act Dataset. The source code is available at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/Dichao-Liu/Lightweight_Distracted_Driver_Recognition_with_Distillation-Based_NAS_and_Knowledge_Transfer</uri>" @default.
- W4313165002 created "2023-01-06" @default.
- W4313165002 creator A5023219885 @default.
- W4313165002 creator A5044820831 @default.
- W4313165002 creator A5048624196 @default.
- W4313165002 creator A5080180020 @default.
- W4313165002 creator A5082207306 @default.
- W4313165002 date "2023-01-01" @default.
- W4313165002 modified "2023-09-30" @default.
- W4313165002 title "Toward Extremely Lightweight Distracted Driver Recognition With Distillation-Based Neural Architecture Search and Knowledge Transfer" @default.
- W4313165002 cites W1522734439 @default.
- W4313165002 cites W1840106123 @default.
- W4313165002 cites W2019177772 @default.
- W4313165002 cites W2035041888 @default.
- W4313165002 cites W2083638830 @default.
- W4313165002 cites W2108598243 @default.
- W4313165002 cites W2110628941 @default.
- W4313165002 cites W2147625498 @default.
- W4313165002 cites W2161969291 @default.
- W4313165002 cites W2166880842 @default.
- W4313165002 cites W2194775991 @default.
- W4313165002 cites W2311191605 @default.
- W4313165002 cites W2324736398 @default.
- W4313165002 cites W2523739106 @default.
- W4313165002 cites W2606294640 @default.
- W4313165002 cites W2607538400 @default.
- W4313165002 cites W2733839197 @default.
- W4313165002 cites W2743351574 @default.
- W4313165002 cites W2783719297 @default.
- W4313165002 cites W2791101340 @default.
- W4313165002 cites W2796258071 @default.
- W4313165002 cites W2890157139 @default.
- W4313165002 cites W2896950454 @default.
- W4313165002 cites W2901534369 @default.
- W4313165002 cites W2922509574 @default.
- W4313165002 cites W2939633972 @default.
- W4313165002 cites W2962934715 @default.
- W4313165002 cites W2963163009 @default.
- W4313165002 cites W2963524571 @default.
- W4313165002 cites W2963820951 @default.
- W4313165002 cites W2963821229 @default.
- W4313165002 cites W2964042923 @default.
- W4313165002 cites W2964081807 @default.
- W4313165002 cites W2965658867 @default.
- W4313165002 cites W2982041717 @default.
- W4313165002 cites W2986674040 @default.
- W4313165002 cites W3010732737 @default.
- W4313165002 cites W3010783597 @default.
- W4313165002 cites W3026578319 @default.
- W4313165002 cites W3028505546 @default.
- W4313165002 cites W3034368386 @default.
- W4313165002 cites W3035542613 @default.
- W4313165002 cites W3092544652 @default.
- W4313165002 cites W3100763996 @default.
- W4313165002 cites W3108870912 @default.
- W4313165002 cites W3138261736 @default.
- W4313165002 cites W3139457828 @default.
- W4313165002 cites W3153065833 @default.
- W4313165002 cites W3157251352 @default.
- W4313165002 cites W3176525464 @default.
- W4313165002 cites W2988452672 @default.
- W4313165002 doi "https://doi.org/10.1109/tits.2022.3217342" @default.
- W4313165002 hasPublicationYear "2023" @default.
- W4313165002 type Work @default.
- W4313165002 citedByCount "3" @default.
- W4313165002 countsByYear W43131650022023 @default.
- W4313165002 crossrefType "journal-article" @default.
- W4313165002 hasAuthorship W4313165002A5023219885 @default.
- W4313165002 hasAuthorship W4313165002A5044820831 @default.
- W4313165002 hasAuthorship W4313165002A5048624196 @default.
- W4313165002 hasAuthorship W4313165002A5080180020 @default.
- W4313165002 hasAuthorship W4313165002A5082207306 @default.
- W4313165002 hasBestOaLocation W43131650021 @default.
- W4313165002 hasConcept C104317684 @default.
- W4313165002 hasConcept C108583219 @default.
- W4313165002 hasConcept C119857082 @default.
- W4313165002 hasConcept C150899416 @default.
- W4313165002 hasConcept C154945302 @default.
- W4313165002 hasConcept C169760540 @default.
- W4313165002 hasConcept C185592680 @default.
- W4313165002 hasConcept C193415008 @default.
- W4313165002 hasConcept C2776378700 @default.
- W4313165002 hasConcept C2776465824 @default.
- W4313165002 hasConcept C38652104 @default.
- W4313165002 hasConcept C41008148 @default.
- W4313165002 hasConcept C50644808 @default.
- W4313165002 hasConcept C55493867 @default.
- W4313165002 hasConcept C63479239 @default.
- W4313165002 hasConcept C81363708 @default.
- W4313165002 hasConcept C86803240 @default.
- W4313165002 hasConceptScore W4313165002C104317684 @default.
- W4313165002 hasConceptScore W4313165002C108583219 @default.
- W4313165002 hasConceptScore W4313165002C119857082 @default.
- W4313165002 hasConceptScore W4313165002C150899416 @default.
- W4313165002 hasConceptScore W4313165002C154945302 @default.
- W4313165002 hasConceptScore W4313165002C169760540 @default.
- W4313165002 hasConceptScore W4313165002C185592680 @default.
- W4313165002 hasConceptScore W4313165002C193415008 @default.