Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313166677> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W4313166677 endingPage "37" @default.
- W4313166677 startingPage "26" @default.
- W4313166677 abstract "In this work, we evaluate how neural networks with periodic activation functions can be leveraged to reliably compress large multidimensional medical image datasets, with proof-of-concept application to 4D diffusion-weighted MRI (dMRI). In the medical imaging landscape, multidimensional MRI is a key area of research for developing biomarkers that are both sensitive and specific to the underlying tissue microstructure. However, the high-dimensional nature of these data poses a challenge in terms of both storage and sharing capabilities and associated costs, requiring appropriate algorithms able to represent the information in a low-dimensional space. Recent theoretical developments in deep learning have shown how periodic activation functions are a powerful tool for implicit neural representation of images and can be used for compression of 2D images. Here we extend this approach to 4D images and show how any given 4D dMRI dataset can be accurately represented through the parameters of a sinusoidal activation network, achieving a data compression rate about 10 times higher than the standard DEFLATE algorithm. Our results show that the proposed approach outperforms benchmark ReLU and Tanh activation perceptron architectures in terms of mean squared error, peak signal-to-noise ratio and structural similarity index. Subsequent analyses using the tensor and spherical harmonics representations demonstrate that the proposed lossy compression reproduces accurately the characteristics of the original data, leading to relative errors about 5 to 10 times lower than the benchmark JPEG2000 lossy compression and similar to standard pre-processing steps such as MP-PCA denosing, suggesting a loss of information within the currently accepted levels for clinical application." @default.
- W4313166677 created "2023-01-06" @default.
- W4313166677 creator A5063326468 @default.
- W4313166677 creator A5063421489 @default.
- W4313166677 creator A5085973080 @default.
- W4313166677 date "2022-01-01" @default.
- W4313166677 modified "2023-09-24" @default.
- W4313166677 title "Lossy Compression of Multidimensional Medical Images Using Sinusoidal Activation Networks: An Evaluation Study" @default.
- W4313166677 cites W1982226476 @default.
- W4313166677 cites W1997347659 @default.
- W4313166677 cites W2001611992 @default.
- W4313166677 cites W2014326427 @default.
- W4313166677 cites W2020399841 @default.
- W4313166677 cites W2024171325 @default.
- W4313166677 cites W2032254014 @default.
- W4313166677 cites W2084324430 @default.
- W4313166677 cites W2111508341 @default.
- W4313166677 cites W2133665775 @default.
- W4313166677 cites W2138368514 @default.
- W4313166677 cites W2344337444 @default.
- W4313166677 cites W2508982726 @default.
- W4313166677 cites W2803916235 @default.
- W4313166677 cites W2970898057 @default.
- W4313166677 cites W3015618497 @default.
- W4313166677 cites W3097462804 @default.
- W4313166677 cites W3140413839 @default.
- W4313166677 cites W3174752334 @default.
- W4313166677 doi "https://doi.org/10.1007/978-3-031-21206-2_3" @default.
- W4313166677 hasPublicationYear "2022" @default.
- W4313166677 type Work @default.
- W4313166677 citedByCount "2" @default.
- W4313166677 countsByYear W43131666772023 @default.
- W4313166677 crossrefType "book-chapter" @default.
- W4313166677 hasAuthorship W4313166677A5063326468 @default.
- W4313166677 hasAuthorship W4313166677A5063421489 @default.
- W4313166677 hasAuthorship W4313166677A5085973080 @default.
- W4313166677 hasBestOaLocation W43131666772 @default.
- W4313166677 hasConcept C11413529 @default.
- W4313166677 hasConcept C115961682 @default.
- W4313166677 hasConcept C124101348 @default.
- W4313166677 hasConcept C13280743 @default.
- W4313166677 hasConcept C13481523 @default.
- W4313166677 hasConcept C153180895 @default.
- W4313166677 hasConcept C154945302 @default.
- W4313166677 hasConcept C165021410 @default.
- W4313166677 hasConcept C185798385 @default.
- W4313166677 hasConcept C205649164 @default.
- W4313166677 hasConcept C38365724 @default.
- W4313166677 hasConcept C41008148 @default.
- W4313166677 hasConcept C50644808 @default.
- W4313166677 hasConcept C69216139 @default.
- W4313166677 hasConcept C78548338 @default.
- W4313166677 hasConcept C9417928 @default.
- W4313166677 hasConceptScore W4313166677C11413529 @default.
- W4313166677 hasConceptScore W4313166677C115961682 @default.
- W4313166677 hasConceptScore W4313166677C124101348 @default.
- W4313166677 hasConceptScore W4313166677C13280743 @default.
- W4313166677 hasConceptScore W4313166677C13481523 @default.
- W4313166677 hasConceptScore W4313166677C153180895 @default.
- W4313166677 hasConceptScore W4313166677C154945302 @default.
- W4313166677 hasConceptScore W4313166677C165021410 @default.
- W4313166677 hasConceptScore W4313166677C185798385 @default.
- W4313166677 hasConceptScore W4313166677C205649164 @default.
- W4313166677 hasConceptScore W4313166677C38365724 @default.
- W4313166677 hasConceptScore W4313166677C41008148 @default.
- W4313166677 hasConceptScore W4313166677C50644808 @default.
- W4313166677 hasConceptScore W4313166677C69216139 @default.
- W4313166677 hasConceptScore W4313166677C78548338 @default.
- W4313166677 hasConceptScore W4313166677C9417928 @default.
- W4313166677 hasLocation W43131666771 @default.
- W4313166677 hasLocation W43131666772 @default.
- W4313166677 hasOpenAccess W4313166677 @default.
- W4313166677 hasPrimaryLocation W43131666771 @default.
- W4313166677 hasRelatedWork W1975702453 @default.
- W4313166677 hasRelatedWork W2073135557 @default.
- W4313166677 hasRelatedWork W2078838509 @default.
- W4313166677 hasRelatedWork W2096442341 @default.
- W4313166677 hasRelatedWork W2170329003 @default.
- W4313166677 hasRelatedWork W2336206770 @default.
- W4313166677 hasRelatedWork W2382635182 @default.
- W4313166677 hasRelatedWork W4300524201 @default.
- W4313166677 hasRelatedWork W4313166677 @default.
- W4313166677 hasRelatedWork W2189156317 @default.
- W4313166677 isParatext "false" @default.
- W4313166677 isRetracted "false" @default.
- W4313166677 workType "book-chapter" @default.