Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313169467> ?p ?o ?g. }
- W4313169467 endingPage "130468" @default.
- W4313169467 startingPage "130444" @default.
- W4313169467 abstract "This work presents a comprehensive review of the developments in using Machine Learning (ML)-based algorithms for the modeling and design optimization of switched reluctance motors (SRMs). We reviewed Machine Learning-based numerical and analytical approaches used in modeling SRMs. We showed the difference between the supervised, unsupervised and reinforcement learning algorithms. More focus is placed on supervised learning algorithms as they are the most used algorithms in this area. The supervised learning algorithms studied in this work include the feedforward neural networks, recurrent neural networks, support vector machines, extreme learning machines, and Bayesian networks. This work also discusses several essential aspects of the considered machine learning algorithms, such as core concept, structure, and computational time. It also surveys sample data acquisition methods and data size. Finally, comparisons between the different considered ML-based algorithms are conducted in terms of electric motor type, dataset inputs and outputs, and algorithm’s structure and accuracy to provide a summary overview of the ML-based algorithms for SRMs modeling and design." @default.
- W4313169467 created "2023-01-06" @default.
- W4313169467 creator A5028525307 @default.
- W4313169467 creator A5052083548 @default.
- W4313169467 creator A5056945837 @default.
- W4313169467 creator A5059027048 @default.
- W4313169467 creator A5079289901 @default.
- W4313169467 creator A5079326512 @default.
- W4313169467 date "2022-01-01" @default.
- W4313169467 modified "2023-09-28" @default.
- W4313169467 title "Review of Machine Learning Applications to the Modeling and Design Optimization of Switched Reluctance Motors" @default.
- W4313169467 cites W1122100091 @default.
- W4313169467 cites W1513526813 @default.
- W4313169467 cites W1596717185 @default.
- W4313169467 cites W1923968804 @default.
- W4313169467 cites W1975734802 @default.
- W4313169467 cites W1977594054 @default.
- W4313169467 cites W1980432290 @default.
- W4313169467 cites W1981814398 @default.
- W4313169467 cites W1982878030 @default.
- W4313169467 cites W1984295386 @default.
- W4313169467 cites W1991660525 @default.
- W4313169467 cites W2005846790 @default.
- W4313169467 cites W2010259676 @default.
- W4313169467 cites W2018317891 @default.
- W4313169467 cites W2027761437 @default.
- W4313169467 cites W2035594939 @default.
- W4313169467 cites W2040040451 @default.
- W4313169467 cites W2040070293 @default.
- W4313169467 cites W2040647861 @default.
- W4313169467 cites W2041366980 @default.
- W4313169467 cites W2045794157 @default.
- W4313169467 cites W2053443947 @default.
- W4313169467 cites W2054137409 @default.
- W4313169467 cites W2057671706 @default.
- W4313169467 cites W2061438946 @default.
- W4313169467 cites W2061521045 @default.
- W4313169467 cites W2066436074 @default.
- W4313169467 cites W2067563600 @default.
- W4313169467 cites W2071356438 @default.
- W4313169467 cites W2072194640 @default.
- W4313169467 cites W2074012362 @default.
- W4313169467 cites W2080459620 @default.
- W4313169467 cites W2089159597 @default.
- W4313169467 cites W2095343772 @default.
- W4313169467 cites W2096189523 @default.
- W4313169467 cites W2098513893 @default.
- W4313169467 cites W2101022332 @default.
- W4313169467 cites W2101959319 @default.
- W4313169467 cites W2106323150 @default.
- W4313169467 cites W2111072639 @default.
- W4313169467 cites W2114652055 @default.
- W4313169467 cites W2126603580 @default.
- W4313169467 cites W2130413175 @default.
- W4313169467 cites W2139238144 @default.
- W4313169467 cites W2142053104 @default.
- W4313169467 cites W2142843475 @default.
- W4313169467 cites W2143035907 @default.
- W4313169467 cites W2146171382 @default.
- W4313169467 cites W2149369213 @default.
- W4313169467 cites W2149723649 @default.
- W4313169467 cites W2150735006 @default.
- W4313169467 cites W2152048394 @default.
- W4313169467 cites W2152222754 @default.
- W4313169467 cites W2152339646 @default.
- W4313169467 cites W2155448681 @default.
- W4313169467 cites W2155752967 @default.
- W4313169467 cites W2158220540 @default.
- W4313169467 cites W2158702718 @default.
- W4313169467 cites W2159186265 @default.
- W4313169467 cites W2165120372 @default.
- W4313169467 cites W2279039134 @default.
- W4313169467 cites W2282073114 @default.
- W4313169467 cites W2287252250 @default.
- W4313169467 cites W2327588262 @default.
- W4313169467 cites W2343689273 @default.
- W4313169467 cites W2343937981 @default.
- W4313169467 cites W2430166675 @default.
- W4313169467 cites W2533256569 @default.
- W4313169467 cites W2547935066 @default.
- W4313169467 cites W2587693299 @default.
- W4313169467 cites W2728100481 @default.
- W4313169467 cites W2762435851 @default.
- W4313169467 cites W2800314412 @default.
- W4313169467 cites W2804947873 @default.
- W4313169467 cites W2885616104 @default.
- W4313169467 cites W2886676275 @default.
- W4313169467 cites W2890781737 @default.
- W4313169467 cites W2895151730 @default.
- W4313169467 cites W2910581806 @default.
- W4313169467 cites W2910699681 @default.
- W4313169467 cites W2911713263 @default.
- W4313169467 cites W2922306207 @default.
- W4313169467 cites W2922327436 @default.
- W4313169467 cites W2927592310 @default.
- W4313169467 cites W2936887838 @default.
- W4313169467 cites W2964120946 @default.
- W4313169467 cites W2966449184 @default.